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In lattice gauge theories the expectation values of a large set of physical quantities is naturally
related to the computation (via Monte Carlo simulations) of free-energy differences (or,
equivalently, of ratios of partition functions).

For example:

I equilibrium thermodynamics (pressure)

I free-energy of interfaces between center domains

I ’t Hooft loops

I magnetic susceptibility of strongly-interacting matter

In general, the calculation of ∆F is a computationally challenging problem, since it cannot be
performed directly.
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How to deal with it?

I “integral method”: computing first the derivative of the free energy with respect to some
parameter, and then integrate

I reweighting (→ snake algorithm)

Good motivations to search new methods and algorithms.

Indeed, we want to introduce in LGTs a novel method to calculate directly ∆F based on a recent
but well-established result from non-equilibrium statistical mechanics.
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The Second Law of Thermodynamics

We start from Clausius inequality ∫ B

A

dQ

T
≤ ∆S

that for isothermal transformations becomes
Q

T
≤ ∆S

If we use {
Q = ∆E −W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that the former relation (valid for
a macroscopic system) becomes

W ≥ ∆F
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Let’s consider a system with Hamiltonian Hλ parametrized by λ. Its partition function is

Zλ(T ) =

∫
dΓe−βHλ(Γ)

and the free energy is
Fλ(T ) = −β−1 ln Zλ(T )

Now we are interested in letting the system evolve in time by varying the parameter λ between
two values.
The crucial quantity is the work performed on the system

W =

∫ tfin

tin

dtλ̇
∂Hλ

∂λ

(this is not arbitrary: Ḣ = λ̇ ∂H
∂λ

+ Γ̇ ∂H
∂Γ

can be identified with the First Law of Thermodynamics)

This is repeated in order to have an ensemble of realizations of this process: for each of them W
is computed separately.
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Jarzynski’s equality

Now we can precisely state the non-equilibrium equality [Jarzynski, 1997]〈
exp

(
−

W (λi , λf )

T

)〉
= exp

(
−

F (λf )− F (λi )

T

)
Jarzynski’s equality relates the exponential statistical average of the work done on a system
during a non-equilibrium process with the difference between the initial and the final free energy
of the system.

This result can be derived for different kinds of processes
I Langevin evolution

I molecular dynamics

I Monte Carlo simulations

In general, the evolution of the system is performed by changing continuously (as in real time experiments) or
discretely (as in MC simulations) a chosen set of one or more parameters, such as the couplings of the system.

At the beginning of each transformation the system must be at equilibrium.

In each step of the process the value of λ is changed and the system is brought out of equilibrium.
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Relation with the Second Law

It is instructive to see how this result is connected with the Second Law of Thermodynamics

Starting from Jarzynski’s equality 〈
exp

(
−

W

T

)〉
= exp

(
−

∆F

T

)

and using Jensen’s inequality
〈exp x〉 ≥ exp〈x〉

(valid for averages on real x) we get

exp

(
−

∆F

T

)
=

〈
exp

(
−

W

T

)〉
≥ exp

(
−
〈W 〉

T

)

from which we have
〈W 〉 ≥ ∆F

In this sense Jarzynski’s relation can be seen as a generalization of the Second Law.
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An experimental test

An experimental test of Jarzynski’s equality was performed in 2002 by Liphardt et al. by
mechanically stretching a single molecule of RNA between two conformations.

The irreversible work trajectories (via the non-equilibrium relation) provide the result obtained
with reversible stretching.
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Jarzynski’s equality in Monte Carlo simulations

The non-equilibrium relation has a natural use in processes such as Markov chains in Monte Carlo
simulations 〈

exp

(
−

W (λi , λf )

T

)〉
= exp

(
−

∆F

T

)
I the non-equilibrium transformation begins by varying λ between the initial and final value with some

prescription (e.g. a linear one). After each change ∆λ, the system is updated using the new value.

I W (λi , λf ) is the work made on the system to change the control parameter from λi to λf . The process is
discretized in N steps and the total work is

W (λi ≡ λ0, λf ≡ λN ) =

N−1∑
n=0

(
Hλn+1

[φn]− Hλn [φn]
)

where φn is the configuration of the variables of the system at the n-th step of the transformation

I the 〈...〉 indicates the average on all possible realizations of the non-equilibrium transformation. The
number of these trials is denoted by nr .
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I The equality requires no particular assumptions and holds under very general conditions: in
our case (Markov chains) the detailed balance condition is sufficient

I in a Monte Carlo simulation we can control
I N, the number of steps for each transformation between initial and final value of the parameter λ

I nr , the number of “trials”, i.e. realizations of the non-equilibrium transformation

I A systematic discrepancy appears between the results of ’direct’ (λi → λf ) and ’reverse’
(λf → λi ) transformations when nr is finite. In practice, one has to choose a suitable
combination of N and nr in order to obtain convergence.
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Two special cases

There are two particularly interesting limits of this relation

I the limit of N →∞: now the transformation is infinitely slow and the the system is always
at equilibrium. The switching process is reversible: no energy is dissipated and thus

∆F = W

This is the case of thermodynamic integration

I the limit of N = 1: now the system is driven instantly to the final state and no updates are
performed on the system after the parameter λ has taken the new value. This is the
reweighting technique.
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Benchmark study: interface free energy in Z2 gauge model



Interfaces in the Z2 gauge model

Why study interfaces?

I experimental applications in condensed matter systems

I appear in many contexts also in HEP (“domain walls” at finite T , ’t Hooft loops)

I also related to flux tubes in confining gauge theories which can be studied with string-theory
tools
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I appear in many contexts also in HEP (“domain walls” at finite T , ’t Hooft loops)

I also related to flux tubes in confining gauge theories which can be studied with string-theory
tools

The Z2 gauge model in 3 dimensions is the simplest lattice gauge theory in which to study
interfaces: it is described by a Wilson action with Z2 variables and possesses a confining phase
for small values of the inverse coupling βg .

It can be exactly rewritten through the Kramers-Wannier duality as the 3-dimensional Ising model
on the dual lattice:

H = −β
∑
x,µ

Jx,µ σx σx+aµ̂

where

β = −
1

2
ln tanhβg
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Interface free energy

To create an interface we induce a frustration on the system, by imposing Jx,µ = −1 only for the
couplings in a specific slice of the lattice (and only in one direction) and setting the remaining
ones to 1.

The free energy associated with this interface can be expressed as the ratio between two partition
functions:

I one with periodic boundary conditions (all Jx,µ = 1)

I one with antiperiodic boundary conditions (Jx,µ = −1 on a slice)

Za

Zp
= N0 exp(−F (1))

where N0 is the size of the lattice in the µ direction
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Results in the Z2 gauge model

In order to compute the Za/Zp ratio we applied Jarzynski’s relation by gradually varying the Jx,µ

parameter with a linear prescription:

Jx,µ(n) = 1−
2n

N

where N is the total number of steps between periodic and antiperiodic b.c.
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reverse transformation
direct transformation

β = 0.223102,   N
0
 = 96, N

1
 = 24, N

2
 = 64

The results from ’direct’ and
’reverse’ transformations converge
to older results when N is large
enough.
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Dominant realizations

Picture taken from [Jarzynski (2006)]

The work is statistically distributed on ρ(W ); however the trials that dominate the exponential
average are in the region where g(W ) = ρ(W )e−βW has the peak.
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The equation of state with non-equilibrium methods



Equilibrium thermodynamics in non-Abelian gauge theories

I The thermal properties of QCD and QCD-like theories are particularly well suited for being studied on the
lattice, due to non-perturbative nature of the deconfinement transition.

I low-temperature phase (T < Tc ) → description in terms of a gas of massive, non-interacting hadrons.

I Even more dramatic for pure Yang-Mills theories - lattice data in the confining region have been compared
in detail with the prediction of a glueball gas with an Hagedorn spectrum [Meyer, 2009; Borsányi et al.,
2012; Caselle et al., 2015, Alba et al., 2016].

I Deconfined phase → connection to perburbative regime, Stefan-Boltzmann limit
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Pressure on the lattice

On an hypercubic lattice of size Nt × N3
s , the temperature is determined by

T =
1

a(βg )Nt

In practice, the temperature is controlled by the inverse coupling βg = 2Nc
g2 .

The pressure p in the thermodynamic limit equals the opposite of the free energy density

p ' −f =
T

V
log Z(T ,V )

and a common way to estimate it on the lattice is by the “integral method” [Engels et al., 1990]

p(T ) =
1

a4

1

Nt N3
s

∫ βg (T )

0
dβ′g

∂ log Z

∂β′g

where the integrand is calculated from plaquette expectation values.
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Pressure with Jarzynski’s relation

Jarzynski’s relation gives us a direct method to compute the pressure: we can change
temperature T by controlling the parameter βg in a non-equilibrium transformation!

The difference of pressure between two temperatures T and T0 is

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log〈e−WSU(Nc ) 〉

with WSU(Nc ) being the “work” made on the system:

WSU(Nc ) =

N−1∑
n=0

[
SW (β

(n+1)
g , Û)− SW (β

(n)
g , Û)

]
;

here SW is the standard Wilson action and Û is a configuration of SU(Nc ) variables on the links
of the lattice.

A test for the SU(2) pressure in the proximity of the deconfining transition yielded excellent
results.
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Pressure with Jarzynski’s relation

Jarzynski’s relation gives us a direct method to compute the pressure: we can change
temperature T by controlling the parameter βg in a non-equilibrium transformation!

The difference of pressure between two temperatures T and T0 is
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Preliminary results for the SU(2) model

Finite T simulations performed on 723 × 6 lattices. Temperature range is ∼ [0.9Tc ,Tc ].

Excellent agreement with integral method data [Caselle et al., 2015]
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Work distributions
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The SU(3) equation of state

The equation of state of the SU(3) Yang-Mills theory has been determined in the last few years
using different methods.

I using a variant of the integral method [Borsànyi et al., 2012]

→ the primary observable is the trace of the energy-momentum tensor

I using a moving frame [Giusti and Pepe, 2016]

→ the primary observable is the entropy density (extracted from the spacetime components
of the energy-momentum tensor)

I using the gradient flow [Asakawa et al.], 2014]

An high-precision determination of the SU(3) e.o.s. is an excellent benchmark for the efficiency
of a technique based on non-equilibrium transformations.
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SU(3) pressure across the deconfinement transition, for different values of Nt
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SU(3) e.o.s - continuum extrapolation

∼ 700k configurations over all four values of Nt were used in this region
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Slight discrepancy with respect to previous computations
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Some potential applications

I In principle there are no obstructions to the derivation of numerical methods based on
Jarzynski’s relation for fermionic algorithms, opening the possibility for many potential
applications in full QCD

I the free energy density in QCD with a background magnetic field B, to measure the
magnetic susceptibility of the strongly-interacting matter.

I the entanglement entropy in SU(Nc ) gauge theories

I studies involving the Schrödinger functional: Jarzynski’s relation could be used to compute
changes in the transition amplitude induced by a change in the parameters that specify the
initial and final states on the boundaries.
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Conclusions

Jarzynski’s equality provides new techniques of computing directly quantities related to
free-energy differences in lattice gauge theories.

I A first, benchmark study on the free energy of an interface in the Z2 gauge model provided
excellent results and much insight

I A suitable choice of N and nr is needed to have highly-precise results which are also
unaffected by systematic errors

I A large-scale computation of the pressure for the SU(3) Yang-Mills theory is a good
showcase of the efficiency of this technique
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Thank you for the attention!
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Crooks fluctuation theorem

Crooks discovered in 1998 another relation deeply connected with Jarzynski’s equality

PF (W )

PR (−W )
= eβ(W−∆F )

The PF ,R indicate the probability distribution of the work performed in the forward and reverse
realizations of the transformation.

Wd = W −∆F is the dissipated work.
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Extended to non-isothermal transformations [Chatelain, 2007] (the temperature takes the role of
λ) 〈

exp

(
−

N−1∑
n=0

{
Hλn+1

[φn]

Tn+1
−

Hλn [φn]

Tn

})〉
=

Z(λN ,TN )

Z(λ0,T0)

Alessandro Nada (UniTo & INFN) Jarzynski’s equality in LGTs 8/05/2017



Pressure renormalization

The pressure is normalized to the value of p(T ) at T = 0 in order to remove the contribution of
the vacuum. Using the ’integral method’ the pressure can be rewritten (relative to its T = 0
vacuum contribution) as

p(T )

T 4
= −Nt

4
∫ β

0
dβ′ [3(Pσ + Pτ )− 6P0]

where Pσ and Pτ are the expectation values of spacelike and timelike plaquettes respectively and
P0 is the expectation value at zero T .

Using Jarzynski’s relation one has to perform another transformation βi → βf but on a symmetric
lattice, i.e. with lattice size Ñ4

s instead of Nt × N3
s . The finite temperature result is then

normalized by removing the T = 0 contribution calculated this way.

p(T )

T 4
=

p(T0)

T 4
0

+

(
Nt

Ns

)3

ln

〈
exp

[
−WSU(Nc )(β

(0)
g , βg )Nt×N3

s

]〉
〈

exp
[
−WSU(Nc )(β

(0)
g , βg )

Ñ4

]〉γ
with γ =

(
N3

s × N0

)
/Ñ4.

Alessandro Nada (UniTo & INFN) Jarzynski’s equality in LGTs 8/05/2017



Hagedorn spectrum in SU(2) pure gauge theory
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Hagedorn spectrum in SU(2) and SU(3) pure gauge theories
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Effective string prediction

With this method (using N ' 106 steps and nr ' 103 trials) we obtained high-precision results at
fixed β and for different interface size L.

These results can be compared with the analytical prediction of the effective string model which
describes the transverse fluctuations of the interface at low energy.

In particular, choosing the Nambu-Goto action as Seff , one can look at the difference between
numerical results and the NG prediction and examine its dependence on the size L of the
interface, in order to understand the nature of the terms that do not arise from the NG
low-energy expansion.
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