Open vs Periodic Boundary Conditions in the Deconfined Phase

A Dream of Spring

Adrien Florio in collaboration with Olaf Kaczmarek
Lukas Mazur

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Universität Bielefeld

Zeuthen, 11th of June 2018
Topology in a Nutshell

Open-Boundary Conditions

An Attempt: Switches

Topological Susceptibility

Conclusions and Outlooks
Topology in a Nutshell

Open-Boundary Conditions

An Attempt: Switches

Topological Susceptibility

Conclusions and Outlooks
Classical gauge theories

Fibre bundles
Classical gauge theories

Fibre bundles

Can be 'twisted'!
Classical gauge theories

Fibre bundles

Can be 'twisted'!
Classical gauge theories

Fibre bundles

Can be 'twisted'!

de Rham's Theorem

\[\frac{\partial}{\partial x} \]

Top. invariants

\[\mathbb{P}[\mathcal{F}] \]
Classification

SU(N) bundles in 4D

\[q = -\frac{1}{8\pi^2} \text{Tr} (F \wedge F) \]

de Rham's Theorem

Top. invariants

\[\frac{\partial}{\partial x} \]

\[\mathbb{P}[\mathcal{F}] \]
Classification

\[\text{SU}(N) \text{ bundles in } 4D \]

\[q = -\frac{1}{8\pi^2} \text{Tr} (F \wedge F) \]

Topological charge:

\[Q = -\frac{1}{16\pi^2} \int_M F_{\mu\nu} \tilde{F}^{\mu\nu} \]
Some Solutions on \mathbb{T}^4

$A_\mu = \frac{2\pi}{a} \sum_\nu x^\nu b_{\mu\nu} \mathbf{N}$ \quad $b_{\mu\nu} \in \mathbb{N}$

$F_{\mu\nu} = \frac{2\pi}{a^2} (b_{\mu\nu} - b_{\nu\mu}) \mathbf{N}$

$Q = \frac{1}{2} \text{Tr} \mathbf{N}^2 \left((b_{01} - b_{10})(b_{23} - b_{32}))\right)$

$-(1 \leftrightarrow 2) + (1 \leftrightarrow 3)$

Classification

$SU(N)$ bundles in 4D

2^{nd} Chern class: $q = -\frac{1}{8\pi^2} \text{Tr} (F \wedge F)$

Topological charge:

$Q = -\frac{1}{16\pi^2} \int_M F_{\mu\nu} \tilde{F}^{\mu\nu}$
Some Solutions on \mathbb{T}^4

$$A_\mu = \frac{2\pi}{a} \sum_\nu x^\nu b_{\mu\nu} \mathbf{N} \quad b_{\mu\nu} \in \mathbb{N}$$

$$F_{\mu\nu} = \frac{2\pi}{a^2} (b_{\mu\nu} - b_{\nu\mu}) \mathbf{N}$$

$$Q = \frac{1}{2} \text{Tr} \mathbf{N}^2 ((b_{01} - b_{10}) (b_{23} - b_{32}))$$

$$-(1 \leftrightarrow 2) + (1 \leftrightarrow 3)$$

Remarks

- For compact spaces $Q \in \mathbb{Z}$
- For non-compact spaces $Q \in \mathbb{R}$
- Continuum story

Refs: [Avis,Isham 1978]
[DeWitt,Hart,Isham 1979]
Remarks

- For compact spaces $Q \in \mathbb{Z}$
- For non-compact spaces $Q \in \mathbb{R}$
- **Continuum** story

Refs: [Avis, Isham 1978]
[DeWitt, Hart, Isham 1979]
Motivations

Axion Cosmology

Clustering

$U(1)$ Problem

Issues

Physical: High-T Suppression

Algorithmical: Topological Freezing

No more top. transitions!
Issues

Physical: High-T Suppression

Algorithmical: Topological Freezing

No more top. transitions!

Lat. accomodates < and < inst.

Damped by the Plasma
High-T Suppression

Lat. accommodates $< \text{ and } < \text{ inst.}$

\[\text{Damped by the Plasma} \]

Freezing

Continuum limit

Distinct top. sectors emerge

Access. by small disp. in conf. space

$\tau_{\text{autocorrelation}}(Q) \gg 0$
Freezing

Continuum limit

Distinct top. sectors emerge

Access. by small disp. in conf. space

\[t_{\text{autocorrelation}}(Q) \gg 0 \]

Solutions

• Meta-Dynamics

• Reweighting

• Multiscale Equilibration

• Master-Field

• Open-Boundary Conditions

• ...

Refs: [Laio et al., 2015; Moore et al., 2018]
[Endres et al., 2015; Luscher, 2017]
[Luscher et al. 2011]
Freezing

Continuum limit

Distinct top. sectors emerge

Access. by small disp. in conf. space

\[t_{\text{autocorrelation}}(Q) >> 0 \]

Solutions

• Meta-Dynamics

• Reweighting

• Multiscale Equilibration

• Master-Field

• Open-Boundary Conditions

• ...

Refs: [Laio et al., 2015; Moore et al., 2018]
[Endres et al., 2015; Luscher, 2017]
[Luscher et al. 2011]
Topological Susceptibility

Conclusions and Outlooks
Solutions

- Meta-Dynamics

- Reweighting

- Multiscale Equilibration

- Master-Field

- Open-Boundary Conditions

...

Refs: [Laio et al., 2015; Moore et al., 2018]
 [Endres et al., 2015; Luscher, 2017]
 [Luscher et al., 2011]
Remarks

- For compact spaces $Q \in \mathbb{Z}$

- For non-compact spaces $Q \in \mathbb{R}$

- **Continuum** story

Refs: [Avis, Isham 1978]
[DeWitt, Hart, Isham 1979]
Remarks

• For compact spaces \(Q \in \mathbb{Z} \)

• For non-compact spaces \(Q \in \mathbb{R} \)

• **Continuum** story

Refs: [Avis, Isham 1978]
[DeWitt, Hart, Isham 1979]

OBC

\[T^4 \]

Open-up the torus!
Open-up the torus!

OBC

\[\mathbb{T}^4 \]

\[T \not= 0 \]

\[F_{0\mu}(x)|_{x_0=0} = F_{0\mu}(x)|_{x_0=l_0} = 0 \]

\[F_{i\mu}(x)|_{x_i=0} = F_{i\mu}(x)|_{x_i=l_i} = 0 \]
Open-up the torus!

\[T^4 \]

\[F_{0\mu}(x)|_{x_0=0} = F_{0\mu}(x)|_{x_0=l_0} = 0 \]

\[T \neq 0 \]

\[F_{i\mu}(x)|_{x_i=0} = F_{i\mu}(x)|_{x_i=l_i} = 0 \]
\[\beta = \frac{6}{\gamma} \]

\[T \approx 1.28T_c \]
\[T \approx 1.28 T_c \]

\[\langle Q^2 \rangle \] vs \[\sqrt{\frac{6}{\beta}} \]

\[\beta = 6.165 \]
\[
\beta = 6.580
\]

\[
\sqrt{\frac{6}{\beta}} = \langle \frac{Q^2}{V} \rangle [\text{GeV}^4]
\]

\[
T \approx 1.28T_c
\]
\[\beta \approx 6.930 \]
Wilson Flow

\[\tau = \frac{459}{900} \]

\[\tau = \frac{1950}{900} \]

\[\frac{dQ}{\tau_{wils}} \]

\[|Q| = 1 \]

\[|Q| = 2 \]
Wilson Flow

WF and Q

$\tau = 459$

$\tau = 1950$

$\frac{dQ}{\tau_{wils}}$

$|Q| = 1$

$|Q| = 2$

Finite Size Effects

\[V_s = L_s^3 \]
Finite Size Effects

\[V_s = L_s^3 \quad V_s' = L_s'^3 \]
\[V_s = L_3 \]

\[V_s' = L_3' \]

\[\langle W^{4 \times 4}_{\text{loops}} \rangle \]
Topology in a Nutshell

Open-Boundary Conditions

An Attempt: Switches

Topological Susceptibility

Conclusions and Outlooks
Switches

Do n_{PBC} sweeps with PBC

A. Florio, Zeuthen, 11/06/18
Switches

Do n_{PBC} sweeps with PBC

Switch PBC to OBC in some direction(s)
Switches

Do n_{PBC} sweeps with PBC

Switch PBC to OBC in some direction(s)

Do n_{OBC} sweeps
Switches

Do n_{PBC} sweeps with PBC

Switch PBC to OBC in some direction(s)

Do n_{OBC} sweeps

Switch back
Switches

Do n_{PBC} sweeps with PBC

Switch PBC to OBC
in some direction(s)

Do n_{OBC} sweeps

Switch back

Do n_{PBC} sweeps
Switches

Do n_{PBC} sweeps with PBC

Switch PBC to OBC in some direction(s)

Do n_{OBC} sweeps

Switch back

Do n_{PBC} sweeps

\[\ldots \]
Switches

Do n_{PBC} sweeps with PBC

Switch PBC to OBC in some direction(s)

Do n_{OBC} sweeps

Switch back

Do n_{PBC} sweeps

...

Repeat n_{trans} times
Switches

Do n_{PBC} sweeps with PBC

Switch PBC to OBC
in some direction(s)

Do n_{OBC} sweeps

Switch back

Do n_{PBC} sweeps

...

Repeat n_{trans} times

A. Florio, Zeuthen, 11/06/18
Switches

Do n_{PBC} sweeps with PBC

Switch PBC to OBC in some direction(s)

Do n_{OBC} sweeps

Switch back

Do n_{PBC} sweeps

...\[\text{Repeat } n_{\text{trans}} \text{ times} \]
$T \approx 1.5T_c, 16 \times 64^3, \beta = 6.872$

- Generates higher Q's
Facts

\[T \approx 1.5T_c, 16 \times 64^3, \beta = 6.872 \]

- Generates higher Q's
- Oversamples
\[T \approx 1.5T_c, \ 16 \times 64^3, \ \beta = 6.872 \]

- Generates higher Q's
- Oversamples

Break det. balance

\[// \text{tempering?} \]
\[T \approx 1.5 T_c, 16 \times 64^3, \beta = 6.872 \]

- Generates higher \(Q \)'s
- Oversamples

\[Q \]

Break det. balance

Which dist? OBC?

// tempering?
Topology in a Nutshell

Open-Boundary Conditions

An Attempt: Switches

Topological Susceptibility

Conclusions and Outlooks
\[\chi_t = \frac{1}{V} \frac{d^2}{d\theta^2} \ln Z(\theta) \bigg|_{\theta=0} \]
\[= \frac{1}{V} \left\langle \int dx q(x) \int dy q(y) \right\rangle \]
\[= \frac{1}{V} \left\langle \int dx_0 \int dy q(x_0) q(x_0 + y) \right\rangle \]
\[= \frac{1}{V} \left\langle \int dx_0 \int dy G_{qq}(x_0, x_0 + y) \right\rangle \]

[Bonati, d'Elia, 2017; Refs. therein]
\[\chi_t = \frac{1}{V} \frac{d^2}{d\theta^2} \ln Z(\theta) \bigg|_{\theta=0} \]

\[= \frac{1}{V} \left\langle \int dx q(x) \int dy q(y) \right\rangle \]

\[= \frac{1}{V} \left\langle \int dx_0 \int dy q(x_0) q(x_0 + y) \right\rangle \]

\[= \frac{1}{V} \left\langle \int dx_0 \int dy G_{qq}(x_0, x_0 + y) \right\rangle \]

[Bonati, d'Elia, 2017; Refs. therein]
\[\chi_t = \frac{1}{V} \left. \frac{d^2}{d\theta^2} \ln Z(\theta) \right|_{\theta=0} \]

\[= \frac{1}{V} \left\langle \int dx q(x) \int dy q(y) \right\rangle \]

\[= \frac{1}{V} \left\langle \int dx_0 \int dy q(x_0) q(x_0 + y) \right\rangle \]

\[= \frac{1}{V} \left\langle \int dx_0 \int dy G_{qq}(x_0, x_0 + y) \right\rangle \]

[Bonati, d'Elia, 2017; Refs. therein]
\[\chi_t = \frac{1}{V} \left(\frac{d^2}{d\theta^2} \ln Z(\theta) \right) \bigg|_{\theta=0} \]

\[= \frac{1}{V} \langle \int dx q(x) \int dy q(y) \rangle \]

\[= \frac{1}{V} \langle \int dx_0 \int dy q(x_0) q(x_0 + y) \rangle \]

\[= \frac{1}{V} \langle \int dx_0 \int dy G_{qq}(x_0, x_0 + y) \rangle \]

[Bonati, d'Elia, 2017; Refs. therein]
\(\chi_t \)

\[
\chi_t = \frac{1}{V} \left. \frac{d^2}{d\theta^2} \ln \mathcal{Z}(\theta) \right|_{\theta=0}
\]

\[
= \frac{1}{V} \left\langle \int dx q(x) \int dy q(y) \right\rangle
\]

\[
= \frac{1}{V} \left\langle \int dx_0 \int dy q(x_0) q(x_0 + y) \right\rangle
\]

\[
= \frac{1}{V} \left\langle \int dx_0 \int dy G_{qq}(x_0, x_0 + y) \right\rangle
\]

[Bonati, d'Elia, 2017; Refs. therein]
χ_t

\[\mathcal{S} \text{ to } \mathcal{S}: \]
\[\chi_t = \left\langle \int_{\Omega_{\text{cut}}} dy G_{qq}(x_{\text{mid}}, x_{\text{mid}} + y) \right\rangle \]

Subvolume av.:
\[\chi_t = \left< Q^2 \right|_{\Omega_{\text{sub}}} \]
S to S:

$$\chi_t = \left\langle \int_{\Omega_{cut}} dy G_{qq}(x_{mid}, x_{mid} + y) \right\rangle$$

Subvolume av.:

$$\chi_t = < Q^2 > \big|_{\Omega_{sub}}$$

Benchmark

$64^3 \times 6$, $\beta = 6.139$

$$a\chi^{1/4} = 0.030 \pm 0.0005$$

[Berkowitz et al., 2015]
\[\alpha x(r)^{1/4} \]

Correlators

\[\langle \frac{q^2}{V} \rangle_{PBC} \]
\[a \chi(r)^{1/4} \]

Correlators

\[\langle \frac{q^2}{V} \rangle_{PBC} \]

\[PBC^4 \]

\[ar \]

\[10^{-2} \]
\[
\alpha \chi(r)^{1/4}
\]

Correlators

\[
\langle \frac{\psi^2}{V} \rangle_{PBC}
\]

\[
OBC^3 \times PBC
\]

\[
PBC^4
\]
\[\alpha(x(r)^{1/4}) \]

Correlators

\[\langle \frac{\varphi^2}{V} \rangle_{PBC} \]

\[OBC^3 \times PBC \]

\[PBC^4 \]

\[OBC_x \times PBC^3 \]

\[ar \]

\[0 \rightarrow 30 \]

\[0 \rightarrow 0.1 \times 10^{-2} \]

A. Florio, Zeuthen, 11/06/18
Preliminary

\[\langle \frac{\varphi^2}{V} \rangle \bigg|_{PBC} \]

Correlators

\[a x(r)^{1/4} \]

\[OBC_x \times PBC^3 \]

\[ar \]

\[10^{-2} \]
\[
\alpha \chi(r)^{1/4}
\]

Correlators

\[
\langle \frac{\mathcal{Q}^2}{V} \rangle_{PBC}
\]

\[
OBC^3 \times PBC \quad PBC^4
\]

\[
OBC_x \times PBC^3 \quad PBC^4, Q = 0
\]
$PBC = PBC, |Q| < 2$
A. Florio, Zeuthen, 11/06/18
$a \chi(r)^{1/4}$

Subvolumes

$\langle \frac{q^2}{V} \rangle_{PBC}$

$OBC^3 \times PBC$

PBC^4

$OBC_x \times PBC^3$
Subvolumes

\[a \chi(r)^{1/4} \]

\[\langle \frac{Q^2}{V} \rangle_{PBC} \]

\[OBC^3 \times PBC \]

\[PBC^4 \]

\[OBC^x \times PBC^3 \]

\[PBC^4, Q = 0 \]
\[\langle \frac{Q^2}{V} \rangle_{PBC} \mid OBC^3 \times PBC \]

\[OBC \times PBC^3 \]

\[PBC^4, Q = 0 \]

\[PBC^4, |Q| < 2 \]
OBC

PBC

\[q(x) \]

\[OBC \]

\[PBC \]
Benchmark

\[64^3 \times 6, \beta = 6.139 \]

\[\alpha \chi^{1/4} = 0.030 \pm 0.0005 \]

[Berkowitz et al., 2015]

Larger Lattices

\[64^3, 96^3 \times 16, \beta = 6.872 \]
Preliminary

\[\langle \frac{Q^2}{V} \rangle \bigg|_{PBC} \]
\[\alpha \chi(r)^{1/4} \]

Subvolumes

\[\langle \frac{Q^2}{V} \rangle \big|_{PBC} \]

\[PBC^4 \]
Subvolumes

\[\alpha \chi(r)^{1/4} \]

\[\langle \frac{Q^2}{V} \rangle_{PBC} \quad OBC^3 \times PBC \quad PBC^4 \]

\[ar \]

\[0 \quad 10 \quad 20 \quad 30 \quad 40 \]

\[0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \quad 3 \times 10^{-2} \]
Subvolumes

\[aX(r)^{1/4} \]

\[\langle \frac{Q^2}{V} \rangle_{PBC} \]

\[OBC^3 \times PBC \]

\[OBC_x \times PBC^3 \]

\[PBC^4 \]
Preliminary

\[\langle \frac{q^2}{V} \rangle \bigg|_{\text{PBC}} \]

\[\text{OBC}^3 \times \text{PBC} \]

\[\text{OBC}_x \times \text{PBC}^3 \]

\[\text{PBC}^4 \]
What's next?

• Improve statistics
What's next?

- Improve statistics
- Wilson flow dep.
Todo's

- Improve statistics
- Wilson flow dep.
Todo's

- Improve statistics
- Wilson flow dep.
- Model Q diffusion?
 [Mawhinney et al., 2014]
Topology in a Nutshell

Open-Boundary Conditions

An Attempt: Switches

Topological Susceptibility

Conclusions and Outlooks
Take Away

• OBC may be used for thermal simulations

• May not fully solve the topological freezing

• "Local" χ_t differentiates between freezing and high-T suppression

• χ_t at very high-T?
Take Away

- OBC may be used for thermal simulations
- May not fully solve the topological freezing
- "Local" χ_t differentiates between freezing and high-T suppression
- χ_t at very high-T?
Take Away

- OBC may be used for thermal simulations
- May not fully solve the topological freezing
- "Local" χ_t differentiates between freezing and high-T suppression
- χ_t at very high-T?
Take Away

- OBC may be used for thermal simulations

- May not fully solve the topological freezing

- "Local" χ_t differentiates between freezing and high-T suppression

- χ_t at very high-T?
Take Away

• OBC may be used for thermal simulations

• May not fully solve the topological freezing

• "Local" χ_t differentiates between freezing and high-T suppression

• χ_t at very high-T?

Thank you!

(... and https://www.pinterest.com/pin/571746115169525297/ for the Moebius strip)

(but more Yannis Burnier for his early-on collaboration)