Sign problem and diagrammatic representation of scalar vs. real QCD

Falk Bruckmann (U Regensburg)

NIC DESY Zeuthen, Febr. 2018

with J. Wellnhofer (C. Gattringer, T. Kloiber, T. Sulejmanpašić) [1710.08243 (1507.04253, 1509.05189, 1607.02457)]

Falk Bruckmann

Sign problem and diagrammatic representation of scalar vs. real QCD

sign problem at nonzero chemical potential μ :

complex action = complex weight prevents importance sampling

- applies to many systems
- solved in sigma models (and in various other systems Gattringer et al.) through dual variables = diagrammatic representation FB et al. 15, 16 sign problem is representation-dependent
- a similar diagrammatic representation of QCD does not solve the sign problem
 Rossi, Wolff 84
 - a sign problem even at $\mu = 0$ Karsch, Mütter 89

- ⇒ shed light on QCD via gauge theories with scalar quarks (↑ relevant beyond the Standard model!?)
 - $\bullet\,$ disentangle sign problems due to μ and due to quarks as fermions
 - study more than one flavor
 - goal: include gauge action = beyond strong coupling
 - as the sign problem is solved indeed (see below) one could test other approaches to QCD at nonzero μ

Appetizer: 2dim. O(3) model through dual simulations

generation of particle number density at $\mu \ge m$ 'Silver blaze'

where the mass m is dynamically generated as in QCD

- very low $T \Rightarrow$ quantum phase transition of second order
- dynamical critical exponent z consistent with 2 up to 6400×160

Falk Bruckmann

2dim

particle interactions

• from finite size L (and low T)

sharp jumps in particle number

• $\mu_{\text{crit},1} = m \Rightarrow \text{mass threshold as for large } L$ above $\mu_{\text{crit},2} = E_{\min}^{Q=2} \Rightarrow \text{phase shifts } \delta$ a la Lüscher

agree with analytical S-matrix and numerical spectroscopy

Falk Bruckmann

Sign problem and diagrammatic representation of scalar vs. real QCD

Common setting

$$S \sim -\sum_{x,\nu} \sum_{f} \left[\phi_f^{\dagger}(x) U_{\nu}(x) \phi_f(x+\hat{\nu}) e^{-\mu_f \delta_{\nu,0}} + \underbrace{\phi_f(x) U_{\nu}^{\dagger}(x) \phi_f^{\dagger}(x+\hat{\nu}) e^{\mu_f \delta_{\nu,0}}}_{\text{not } c \ c \ c \text{ compl. action}} \right]$$

plus $(2d + (am)^2)|\phi|^2$: Gaussian

not c.c.:	comp	I. action
-----------	------	-----------

	CP(N-1) in 1+1d	scalar QCD in 3+1d
scalar ϕ_f flavors f gauge field <i>U</i>	complex number $ \phi = 1^{\sharp}$ N U(1) (auxiliary)	color vector <i>N_f</i> SU(3) [♭]
	[‡] asympt. freedom, dyn. mass generation etc.	^b no plaquette yet strong coupling

integrate out original lattice fields introducing new 'dual' variables

$$Z(\mu) = \int_{\{\phi, U\}} \underbrace{e^{-S[\phi, U; \mu]}}_{\in \mathbb{C} \text{ or } \mathbb{R}} \quad \Rightarrow \quad Z \quad = \sum_{\{k_{\nu}\}} \underbrace{w[k_{\nu}]}_{\{k_{\nu}\}}$$

= exact partition function (and observables)

see first half of dualizing the 2d Ising model: Kramers, Wannier 41

diagrammatic representation:

•

• dual variables are nonnegative integers k_{ν} on lattice bonds

integrate out original lattice fields introducing new 'dual' variables

$$Z(\mu) = \int_{\{\phi, U\}} \underbrace{e^{-S[\phi, U; \mu]}}_{\in \mathbb{C} \text{ or } \mathbb{R}} \quad \Rightarrow \quad Z \quad = \sum_{\{k_{\nu}\}} \underbrace{w[k_{\nu}]}_{>0}$$

= exact partition function (and observables)

see first half of dualizing the 2d Ising model: Kramers, Wannier 41

diagrammatic representation:

•

- dual variables are nonnegative integers k_{ν} on lattice bonds
- hopefully: new weight is positive

integrate out original lattice fields introducing new 'dual' variables

$$Z(\mu) = \int_{\{\phi, U\}} \underbrace{e^{-S[\phi, U; \mu]}}_{\in \mathbb{C} \text{ or } \mathbb{R}} \quad \Rightarrow \quad Z(\mu) = \sum_{\{k_{\nu}\}} \underbrace{w[k_{\nu}]}_{>0} \cdot \underbrace{e^{-\mu \sum m_{0}}}_{>0}$$

= exact partition function (and observables)

see first half of dualizing the 2d Ising model: Kramers, Wannier 41

diagrammatic representation:

- dual variables are nonnegative integers k_{ν} on lattice bonds
- hopefully: new weight is positive
- µ couples to a U(1) charge = difference of occupation numbers of particles minus antiparticles: still positive

integrate out original lattice fields introducing new 'dual' variables

$$Z(\mu) = \int_{\{\phi, U\}} \underbrace{e^{-S[\phi, U; \mu]}}_{\in \mathbb{C} \text{ or } \mathbb{R}} \quad \Rightarrow \quad Z(\mu) = \sum_{\{k_\nu\}} \underbrace{w[k_\nu]}_{>0} \cdot \underbrace{e^{-\mu \sum m_0}}_{>0} \cdot \underbrace{\delta' s}_{0 \text{ or } 1}$$

= exact partition function (and observables)

see first half of dualizing the 2d Ising model: Kramers, Wannier 41

diagrammatic representation:

- dual variables are nonnegative integers k_{ν} on lattice bonds
- hopefully: new weight is positive
- µ couples to a U(1) charge = difference of occupation numbers of particles minus antiparticles: still positive
- explicit conservation of the U(1) current: $\partial_{\nu}^{\text{discrete}} m_{\nu} = 0$ via Kronecker- δ constraints worm algorithms

Falk Bruckmann

Dual variables at work in CP(N-1)

- polar coordinates: φ = r e^{iφ} (for all flavors)
 U(1) fields: U_ν = e^{iA_ν}
- action contains the forward and backward terms

$$r(x)r(x+\hat{\nu})\underbrace{e^{\pm i(\varphi(x)-\varphi(x+\hat{\nu})+A_{\nu}(x))}}_{\text{not real}}e^{\pm \mu\delta_{\nu,0}}$$

(0) expand the 'problematic' weight for all bonds and flavors $\dots_{\nu,f}(x)$

$$e^{(..)_{+}+(..)_{-}} = \sum_{k^{\pm}=0}^{\infty} \frac{(..)_{+}^{k^{+}}(..)_{-}^{k^{-}}}{k^{+}!k^{-}!}$$

action terms to integer powers, original fields factorize

weight
$$\sim (r(x)r(x+\hat{\nu})e^{i(\varphi(x)-\varphi(x+\hat{\nu})+A_{\nu}(x))}e^{\mu\delta_{\nu,0}})^{k_{\nu}^{+}(x)}$$

 $\times (r(x)r(x+\hat{\nu})e^{-i(\varphi(x)-\varphi(x+\hat{\nu})+A_{\nu}(x))}e^{-\mu\delta_{\nu,0}})^{k_{\nu}^{-}(x)}$

(1) integrate out the phases \Rightarrow Lagrange multipliers

$$\int_0^{2\pi} d\varphi(x) \, e^{-i\varphi(x) \sum_{\nu} [k_{\nu}^+(x) - k_{\nu}^-(x) - x \leftrightarrow (x+\hat{\nu})]}$$

$$\begin{split} \mathsf{weight} &\sim \big(r(x) r(x+\hat{\nu}) \boldsymbol{e}^{i(\varphi(x)-\varphi(x+\hat{\nu})+\boldsymbol{A}_{\nu}(x))} \boldsymbol{e}^{\mu\delta_{\nu,0}} \big)^{k_{\nu}^{+}(x)} \\ &\times \big(r(x) r(x+\hat{\nu}) \boldsymbol{e}^{-i(\varphi(x)-\varphi(x+\hat{\nu})+\boldsymbol{A}_{\nu}(x))} \boldsymbol{e}^{-\mu\delta_{\nu,0}} \big)^{k_{\nu}^{-}(x)} \end{split}$$

(1) integrate out the phases \Rightarrow Lagrange multipliers

$$\int_{0}^{2\pi} d\varphi(x) \ e^{-i\varphi(x)\sum_{\nu}[k_{\nu}^{+}(x)-k_{\nu}^{-}(x)-x\leftrightarrow(x+\hat{\nu})]} = \delta_{\mathrm{Kronecker}}(\nabla_{\nu} \ \widehat{m_{\nu}}) \ \forall x$$

either 1 = positive (\checkmark) or 0 = ignored (analytic cancellations!) current conservation for $m \Rightarrow$ closed loops

$$\begin{split} \mathsf{weight} &\sim \big(r(x) r(x+\hat{\nu}) \boldsymbol{e}^{i(\varphi(x)-\varphi(x+\hat{\nu})+\boldsymbol{A}_{\nu}(x))} \boldsymbol{e}^{\mu\delta_{\nu,0}} \big)^{k_{\nu}^{+}(x)} \\ &\times \big(r(x) r(x+\hat{\nu}) \boldsymbol{e}^{-i(\varphi(x)-\varphi(x+\hat{\nu})+\boldsymbol{A}_{\nu}(x))} \boldsymbol{e}^{-\mu\delta_{\nu,0}} \big)^{k_{\nu}^{-}(x)} \end{split}$$

(1) integrate out the phases \Rightarrow Lagrange multipliers

$$\int_{0}^{2\pi} d\varphi(x) \, e^{-i\varphi(x) \sum_{\nu} [k_{\nu}^{+}(x) - k_{\nu}^{-}(x) - x \leftrightarrow (x + \hat{\nu})]} = \delta_{\text{Kronecker}} (\nabla_{\nu} \, \widetilde{m_{\nu}}) \, \forall x$$

either 1 = positive (\checkmark) or 0 = ignored (analytic cancellations!) current conservation for $m \Rightarrow$ closed loops

(2) μ enters with the same dual variable $m = k^+ - k^$ $e^{-\mu \sum_x m_0(x)} = e^{-\mu N_t \sum_{\vec{x}} m_0(x_0, \vec{x})} = e^{-\mu \beta Q}$

as in the energy (defining) rep. of the grand canonical ensemble

net charge/particle number Q: flux through any time slice x_0 or temporal winding number of the *m*-loops movie

Falk Bruckmann

weight
$$\sim \left(r(x)r(x+\hat{\nu})e^{i(\varphi(x)-\varphi(x+\hat{\nu})+A_{\nu}(x))}e^{\mu\delta_{\nu,0}}\right)^{k_{\nu}^{+}(x)}$$

 $\times \left(r(x)r(x+\hat{\nu})e^{-i(\varphi(x)-\varphi(x+\hat{\nu})+A_{\nu}(x))}e^{-\mu\delta_{\nu,0}}\right)^{k_{\nu}^{-}(x)}$

(3) integrate out the radii (with Gaussian part) \Rightarrow positive weight ratio

ratio of gamma functions

(4) flavor-diagonal U(1) is gauged:

$$\int_{0}^{2\pi} dA_{\nu}(x) e^{iA_{\nu}(x)\sum_{f} m_{\nu}^{f}(x)} = \delta\Big(\sum_{f} m_{\nu,f}(x)\Big)$$

total charge over all flavors vanishes explicitly

Dual variables at work in scalar QCD

FB, Wellnhofer 17

• action again, for simplicity same μ for all flavors:

$$S = -\beta \sum_{x,\nu} \operatorname{tr} \Big[\underbrace{\sum_{f} \phi_f(x+\hat{\nu}) \phi_f(x)^{\dagger}}_{f} U_{\nu}(x) e^{-\mu \delta_{\nu,0}} + J_{\nu}(x)^{\dagger} U_{\nu}(x)^{\dagger} e^{\mu \delta_{\nu,0}} \Big]$$

• $U_{\nu}(x) \in SU(3)$: group integrals not so simple

fortunately a closed expression exists: Eriksson et al. 81

$$\int dU \exp\left(\operatorname{tr}\left[JUe^{-\mu} + J^{\dagger}U^{\dagger}e^{-\mu}\right]\right) = \sum_{a,b,c,k,\bar{k}=0}^{\infty} \frac{\operatorname{positive}(a,b,c,k,\bar{k})}{a!b!c!k!\bar{k}!}$$

 $\times (\mathrm{tr} J J^{\dagger})^{a} \times \mathcal{O}((J J^{\dagger})^{2})^{b} \times (\mathrm{det} \, J J^{\dagger})^{c} \times (\mathrm{det} \, J \, e^{-\mu})^{k} \times (\mathrm{det} \, J^{\dagger} e^{\mu})^{\bar{k}}$

dual variables/occup. numbers (a, b, c, k, \bar{k}) : again on bonds ... $_{\nu}(x)$

Interpreting dualized scalar QCD

weight $\sim (\text{tr} J J^{\dagger})^{a} \mathcal{O}((J J^{\dagger})^{2})^{b} (\det J J^{\dagger})^{c} \times e^{-\mu (k-\bar{k})_{\nu=0}} \times (\det J)^{k} (\det J^{\dagger})^{\bar{k}}$

- first three terms μ-indep.: quarks hop with antiquarks = 'mesons' pos. functions of positive operator JJ[†]
- next term: μ couples to the charge of the current $k \bar{k} = m$ positive \checkmark
- conserved? yes, by the remaining integral over ϕ -integral:

 $\int_{\mathbb{C}} d\phi \, e^{-\text{mass}^2 |\phi|^2} \, \phi^A \phi^{*B} \neq 0 \quad \text{iff } A = B \qquad \text{(phase integration!)}$

constrains the last two terms exactly such that m conserved

last two terms: 'baryons' and 'antibaryons' positive?

example configuration

 $\bullet\,$ bosonic occupation numbers from 0 (empty sites admissible) to $\infty\,$ here mostly 0 and 1

Falk Bruckmann

Sign problem in scalar QCD

depends crucially on the number of flavors:

• $N = 1, 2: \mu$ -independent

no (anti)baryons: det $J = \det_{3 \times 3} \left(\phi_{f=1}^{\text{shifted}} \otimes \phi_{f=1}^{\dagger} + \phi_{f=2}^{\text{shifted}} \otimes \phi_{f=2}^{\dagger} \right) = 0$

at most two indep. rows/columns

no sign problem

 N = 3: μ-dependent scalar baryon needs 3 flavors (to compensate color antisymmetry) sign problem solved

$$\det J = \det_{3\times 3} \left(\sum_{f=1}^{3} \phi_f(x+\hat{\nu}) \otimes \phi_f(x)^{\dagger} \right) = \det \left(\phi_1 |\phi_2| \phi_3 \right)_{x+\hat{\nu}} \det \left(\phi_1 |\phi_2| \phi_3 \right)_x^*$$

along a loop det $(\ldots)_x^*$ meets det $(\ldots)_x$ from the next (anti)baryon

Falk Bruckmann

 N ≥ 4: μ-dependent sign problem unsolved

a similar det-formula exists, but positive?

a few simple example graphs are indeed positive finer constraints needed: conservation of each flavor number

 this case would be interesting for going beyond strong coupling via bosons in 'induced QCD'
 Budczies, Zirnbauer 03

Brandt, Lohmayer, Wettig 16

or Hubbard-Stratonovich bosons Vairinhos, de Forcrand 14

incorporate the plaquette with terms linear and factorizing in U's \Rightarrow just a few more bosons to dualize

Revisit fermionic QCD

action to be dualized

$$S = \beta \sum_{x,\nu} \eta_{\nu}(x) \operatorname{tr} \left[\underbrace{\sum_{f} \psi_{f}(x+\hat{\nu}) \psi_{f}(x)^{\dagger}}_{f} U_{\nu}(x) e^{-\mu \delta_{\nu,0}} - \dots e^{\mu \delta_{\nu,0}} \right]$$

- can use the U-integration again (fermion bilinears J commutative) to arrive at meson and baryon occupation numbers
- different constraints at sites due to Grassmann nature: Grassmannians never twice (Pauli principle) final integration: each Grassmann component must appear once at each site

• example configuration (massless quarks)

- baryons self- and meson-avoiding (but closed)
- all sites visited three times

Falk Bruckmann

Sign problem and diagrammatic representation of scalar vs. real QCD

Sign problem in fermionic QCD

$$\boldsymbol{S} = \beta \sum_{\boldsymbol{x},\nu} \eta_{\nu}(\boldsymbol{x}) \operatorname{tr} \left[\sum_{f} \psi_{f}(\boldsymbol{x} + \hat{\nu}) \psi_{f}(\boldsymbol{x})^{\dagger} \boldsymbol{U}_{\nu}(\boldsymbol{x}) \, \boldsymbol{e}^{-\mu \delta_{\nu,0}} - \dots \, \boldsymbol{e}^{\mu \delta_{\nu,0}} \right]$$

sources of minus signs:

- staggered fermion factors: $\eta_{\nu}(x) \in \{-1, 1\}$
- minus in front of second term: Dirac operator is first order
- reordering Grassmannians for final integration: -1 per quark loop
- antiperiodic boundary conditions: -1 per winding quark loop
- \Rightarrow \exists configurations with negative weights, at $\mu = 0$ already (!)

observation:

 all sources of signs absent for scalar quarks and indeed the sign problem disappears as well

Falk Bruckmann

Sign problem and diagrammatic representation of scalar vs. real QCD

Summary

dualization of 'problematic' action terms:
 expanding the weight e^{-S} and integrating out angles ⇒ explicit current conservation

weight
$$\sim e^{-\mu \sum_{\vec{x}} m_0(x)} = e^{-\mu \operatorname{charge}}$$

 \Rightarrow no sign problem

- CP(N-1) √
 physics at µ ≥ m
- scalar QCD at strong coupling for $N_f \leq 3 \checkmark$

 \Rightarrow more flavors for gauge action

 \Rightarrow test of other approaches in phase diagram

real QCD

source of the sign problem in dual formulation: fermion nature

Outlook: coherent state path integrals

conventional path integrals in QM:

$$\operatorname{tr} e^{-\beta \hat{H} |p\rangle, |q\rangle} \int \prod_{k=1}^{N \to \infty} dp_k dq_k e^{-S_{\operatorname{disc}}[p,q]} \approx \int Dp(t) Dq(t) e^{\int dt \left[ip\dot{q} - \frac{p^2}{2m} - V(q)\right]}$$

recall coherent states:

$$|z
angle:=e^{z\hat{a}^{\dagger}}|0
angle$$
 with $z\in\mathbb{C},\quad a|z
angle=z|z
angle$

coherent state path integrals:

$$\operatorname{tr} e^{-\beta \hat{H}} \stackrel{|z\rangle}{=} \int \prod_{k=1}^{N \to \infty} dz_k e^{-S_{\operatorname{disc}}[z^*,z]} \approx \int Dz(t) e^{\int dt \left[i \operatorname{arg} z |z|^2 - H(z^*,z) \right]}$$

 too naive transition "≈" to continuous paths yields wrong results even for simple bosonic and spin systems (!) Galitski, Wilson 11 [PRL]

resolution: treat arg z (Lagrange multipliers) exactly with dual variables

 $C \cap$