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Motivation

sign problem at nonzero chemical potential µ:
complex action = complex weight prevents importance sampling

applies to many systems

solved in sigma models (and in various other systems Gattringer et al.)
through dual variables = diagrammatic representation FB et al. 15, 16

sign problem is representation-dependent

a similar diagrammatic representation of QCD does not solve the
sign problem Rossi, Wolff 84

a sign problem even at µ = 0 Karsch, Mütter 89
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⇒ shed light on QCD via gauge theories with scalar quarks
(↑ relevant beyond the Standard model!?)

disentangle sign problems due to µ and due to quarks as fermions

study more than one flavor

goal: include gauge action = beyond strong coupling

as the sign problem is solved indeed (see below) one could test
other approaches to QCD at nonzero µ
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Appetizer: 2dim. O(3) model through dual simulations

generation of particle number density at µ ≥ m ‘Silver blaze’

where the mass m is dynamically generated as in QCD 2dim
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particle interactions
from finite size L (and low T )
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sharp jumps in particle number

µcrit,1 = m⇒mass threshold as for large L above

µcrit,2 =EQ=2
min ⇒ phase shifts δ a la Lüscher

agree with analytical S-matrix and numerical spectroscopy
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Common setting

gauge fields and bosons← second derivative not Grassmannians

S ∼ −
∑
x ,ν

∑
f

[
φ†f (x)Uν(x)φf (x+ν̂)e−µf δν,0+φf (x)U†ν(x)φ†f (x + ν̂)e µf δν,0︸ ︷︷ ︸

not c.c.: compl. action

]
plus (2d + (am)2)|φ|2: Gaussian

CP(N-1) in 1+1d scalar QCD in 3+1d

scalar φf complex number |φ| = 1] color vector
flavors f N Nf

gauge field U U(1) (auxiliary) SU(3)[

] asympt. freedom, [ no plaquette yet
dyn. mass generation etc. strong coupling
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Idea

integrate out original lattice fields introducing new ‘dual’ variables

Z (µ) =

∫
{φ,U}

e−S[φ,U;µ]︸ ︷︷ ︸
∈C or R

⇒ Z

(µ)

=
∑
{kν}

w [kν ]︸ ︷︷ ︸

>0

· e−µ
∑

m0︸ ︷︷ ︸
>0

· δ′s︸︷︷︸
0 or 1

= exact partition function (and observables)
see first half of dualizing the 2d Ising model: Kramers, Wannier 41

diagrammatic representation:
dual variables are nonnegative integers kν on lattice bonds

hopefully: new weight is positive

I µ couples to a U(1) charge = difference of occupation numbers of
particles minus antiparticles: still positive

explicit conservation of the U(1) current: ∂discrete
ν mν = 0

via Kronecker-δ constraints worm algorithms
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Dual variables at work in CP(N-1)

polar coordinates: φ = r e i ϕ (for all flavors)
U(1) fields: Uν = e i Aν

action contains the forward and backward terms

r(x)r(x + ν̂) e∓i(ϕ(x)−ϕ(x+ν̂)+Aν(x))︸ ︷︷ ︸
not real

e∓µδν,0

(0) expand the ‘problematic’ weight for all bonds and flavors ..ν,f (x)

e (..)++(..)− =
∞∑

k±=0

(..) k+

+ (..) k−
−

k+!k−!

action terms to integer powers, original fields factorize
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weight ∼
(
r(x)r(x + ν̂)e i(ϕ(x)−ϕ(x+ν̂)+Aν(x))e µδν,0

)k+
ν (x)

×
(
r(x)r(x + ν̂)e−i(ϕ(x)−ϕ(x+ν̂)+Aν(x))e−µδν,0

)k−ν (x)

(1) integrate out the phases⇒ Lagrange multipliers

∫ 2π

0
dϕ(x) e−iϕ(x)

∑
ν [k+

ν (x)−k−ν (x)−x↔(x+ν̂)]

= δKronecker(∇ν

k+
ν − k−ν︷︸︸︷

mν ) ∀x

either 1 = positive (X) or 0 = ignored (analytic cancellations!)

current conservation for m⇒ closed loops

(2) µ enters with the same dual variable m = k+ − k−

e−µ
∑

x m0(x) = e−µNt
∑
~x m0(x0,~x) = e−µβQ

as in the energy (defining) rep. of the grand canonical ensemble

net charge/particle number Q: flux through any time slice x0
or temporal winding number of the m-loops movie
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weight ∼
(

r(x)r(x + ν̂)e i(ϕ(x)−ϕ(x+ν̂)+Aν(x))e µδν,0
)k+

ν (x)

×
(

r(x)r(x + ν̂)e−i(ϕ(x)−ϕ(x+ν̂)+Aν(x))e−µδν,0
)k−ν (x)

(3) integrate out the radii
(with Gaussian part)⇒ positive weight ratio of gamma functions

(4) flavor-diagonal U(1) is gauged:

2π∫
0

dAν(x)e iAν(x)
∑

f mf
ν(x) = δ

(∑
f

mν,f (x)
)

total charge over all flavors vanishes explicitly
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Dual variables at work in scalar QCD
dummy FB, Wellnhofer 17

action again, for simplicity same µ for all flavors:

S = −β
∑
x ,ν

tr
[ d Jν(x) (matrix)︷ ︸︸ ︷∑

f

φf (x + ν̂)φf (x)†Uν(x) e−µδν,0 + Jν(x)†Uν(x)†e µδν,0
]

Uν(x) ∈ SU(3): group integrals not so simple

fortunately a closed expression exists: Eriksson et al. 81∫
dU exp

(
tr
[
JUe−µ + J†U†e−µ

])
=

∞∑
a,b,c,k ,k̄=0

positive(a,b, c, k , k̄)

a!b!c!k !k̄ !

× (trJJ†)a ×O((JJ†)2)b × (det JJ†)c × (det J e−µ)k × (det J†e µ)k̄

dual variables/occup. numbers (a,b, c, k , k̄): again on bonds ..ν(x)
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Interpreting dualized scalar QCD

weight ∼ (trJJ†)aO((JJ†)2)b(det JJ†)c × e−µ(k−k̄)ν=0 × (det J)k (det J†)k̄

first three terms µ-indep.: quarks hop with antiquarks = ‘mesons’
pos. functions of positive operator JJ†

next term: µ couples to the charge of the current k − k̄ = m
positive X

conserved? yes, by the remaining integral over φ-integral:∫
C

dφe−mass2|φ|2 φAφ∗B 6= 0 iff A = B (phase integration!)

constrains the last two terms exactly such that m conserved

last two terms: ‘baryons’ and ’antibaryons’
positive?
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example configuration

bosonic occupation numbers from 0 (empty sites admissible) to∞
here mostly 0 and 1
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Sign problem in scalar QCD

depends crucially on the number of flavors:

N = 1,2: µ-independent

no (anti)baryons: det J = det
3×3

(
φshifted

f =1 ⊗ φ†f =1 + φshifted
f =2 ⊗ φ†f =2

)
= 0

at most two indep. rows/columns

no sign problem

N = 3: µ-dependent
scalar baryon needs 3 flavors (to compensate color antisymmetry)
sign problem solved

det J =det
3×3

( 3∑
f =1

φf (x + ν̂)⊗ φf (x)†
)

=det
(
φ1|φ2|φ3

)
x+ν̂

det
(
φ1|φ2|φ3

)∗
x

along a loop det(. . .)∗x meets det(. . .)x from the next (anti)baryon
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N ≥ 4: µ-dependent
sign problem unsolved
a similar det-formula exists, but positive?
a few simple example graphs are indeed positive
finer constraints needed: conservation of each flavor number

this case would be interesting for going beyond strong coupling via
bosons in ‘induced QCD’ Budczies, Zirnbauer 03

Brandt, Lohmayer, Wettig 16

or Hubbard-Stratonovich bosons Vairinhos, de Forcrand 14

incorporate the plaquette with terms linear and factorizing in U ’s
⇒ just a few more bosons to dualize
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Revisit fermionic QCD

action to be dualized

S = β
∑
x ,ν

ην(x) tr
[ Jν(x)︷ ︸︸ ︷∑

f

ψf (x + ν̂)ψf (x)†Uν(x) e−µδν,0 − . . . e µδν,0
]

can use the U-integration again (fermion bilinears J commutative)
to arrive at meson and baryon occupation numbers

different constraints at sites due to Grassmann nature:
Grassmannians never twice (Pauli principle)
final integration: each Grassmann component must appear once
at each site
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example configuration (massless quarks)

baryons self- and meson-avoiding (but closed)

all sites visited three times
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Sign problem in fermionic QCD

S = β
∑
x ,ν

ην(x) tr
[∑

f

ψf (x + ν̂)ψf (x)†Uν(x) e−µδν,0 − . . . e µδν,0
]

sources of minus signs:

staggered fermion factors: ην(x) ∈ {−1,1}
minus in front of second term: Dirac operator is first order

reordering Grassmannians for final integration: −1 per quark loop

antiperiodic boundary conditions: −1 per winding quark loop

⇒∃ configurations with negative weights, at µ = 0 already (!)

observation:

all sources of signs absent for scalar quarks
and indeed the sign problem disappears as well
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Summary

dualization of ‘problematic’ action terms:
expanding the weight e−S and integrating out angles⇒ explicit
current conservation

weight ∼ e−µ
∑
~x m0(x) = e−µ charge

⇒ no sign problem

CP(N-1) X
physics at µ ≥ m

scalar QCD at strong coupling for Nf ≤ 3 X

⇒more flavors for gauge action
⇒ test of other approaches in phase diagram

real QCD
source of the sign problem in dual formulation: fermion nature
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Outlook: coherent state path integrals

conventional path integrals in QM:

tr e−βĤ |p〉,|q〉=

∫ N→∞∏
k=1

dpkdqke−Sdisc[p,q] ≈
∫

Dp(t)Dq(t) e
∫

dt
[

ipq̇− p2

2m−V (q)
]

recall coherent states:

|z〉 := e zâ† |0〉 with z ∈ C, a|z〉 = z|z〉

coherent state path integrals:

tr e−βĤ |z〉=

∫ N→∞∏
k=1

dzke−Sdisc[z∗,z] ≈
∫

Dz(t) e
∫

dt
[ ∈ C︷ ︸︸ ︷
i arg z ˙|z|2−H(z∗,z)

]
too naive transition “≈” to continuous paths yields wrong results
even for simple bosonic and spin systems (!) Galitski, Wilson 11 [PRL]

resolution: treat arg z (Lagrange multipliers) exactly with dual variables
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