Volume (in-)dependence in $SU(N)$ gauge theories with twisted boundary conditions

Mateusz Koreń

NIC, DESY Zeuthen

In collaboration with Margarita García Pérez, Antonio González-Arroyo & Masanori Okawa

Joint Lattice Seminar, Zeuthen, 16-11-2015
1 Introduction
 - Large-N volume independence
 - Finite-N volume (in-)dependence
 - x-scaling conjecture

2 Lattice calculation

3 Results
1 Introduction
 • Large-N volume independence
 • Finite-N volume (in-)dependence
 • x-scaling conjecture

2 Lattice calculation

3 Results
History of volume reduction (Eguchi, Kawai, 1982)

Consider two pure gauge lattice theories:

- \(S_{\text{gauge}} = \beta \sum_{x, \mu < \nu} (1 - \frac{1}{N} \text{ReTr} U_{x, \mu \nu}^\square) \)
- \(S_{\text{EK}} = \beta \sum_{\mu < \nu} (1 - \frac{1}{N} \text{ReTr} U_{\mu \nu}^\square) \)
Large-\(N\) volume independence

- History of volume reduction (Eguchi, Kawai, 1982)
- Consider two pure gauge lattice theories:
 - \(S_{\text{gauge}} = \beta \sum_{x, \mu < \nu} \left(1 - \frac{1}{N} \text{Re} \text{Tr} U_{x, \mu \nu}^\Box \right)\)
 - \(S_{\text{EK}} = \beta \sum_{\mu < \nu} \left(1 - \frac{1}{N} \text{Re} \text{Tr} U_{\mu} U_{\nu} U_{\mu}^\dagger U_{\nu}^\dagger \right)\)
Large-N volume independence

- History of volume reduction (Eguchi, Kawai, 1982)
- Consider two pure gauge lattice theories:
 - $S_{\text{gauge}} = \beta \sum_{x,\mu<\nu} (1 - \frac{1}{N} \text{Re} \text{Tr} U_{x,\mu\nu}^\Box)$
 - $S_{\text{EK}} = \beta \sum_{\mu<\nu} (1 - \frac{1}{N} \text{Re} \text{Tr} U_{\mu} U_{\nu} U_{\mu}^\dagger U_{\nu}^\dagger)$
- They satisfy the same loop equations in $N \to \infty \iff$ no spontaneous breaking of the center symmetry
- Center symmetry of EK model: $(\mathbb{Z}_N)^4 \xrightarrow[N\to\infty]{\sim} U(1)^4$
- Polyakov loop $P_\mu \equiv \text{Tr} \prod_i U_{x,x+i\mu}$ – order parameter for the center symmetry ($P_\mu \equiv \text{Tr} U_\mu$ in the single-site model).
Large-N volume independence: Failure of EK reduction

Large-N volume independence: Failure of EK reduction

- Perturbative explanation (large β):
 - $U_\mu = V_\mu^\dagger \Lambda_\mu V_\mu$, where $\Lambda_\mu = \text{diag}[e^{i\theta_1^\mu}, \ldots, e^{i\theta_N^\mu}]$
 - Assume $V_\mu = \exp(i A_\mu)$ with small A_μ
Large-\(N\) volume independence: Failure of EK reduction

- Perturbative explanation (large \(\beta\)):
 - \(U_\mu = V_\mu^\dagger \Lambda_\mu V_\mu\), where \(\Lambda_\mu = \text{diag}\{e^{i\vartheta_1^\mu}, \ldots, e^{i\vartheta_N^\mu}\}\)
 - Assume \(V_\mu = \exp(iA_\mu)\) with small \(A_\mu\)
 - \(Z_{EK} = \int \prod_{\mu,i} \frac{d\vartheta^i_\mu}{2\pi} \exp\{-F_{EK}(\vartheta)\}\), where
 \[
 F_{EK} \xrightarrow{\beta \to \infty} (d - 2) \sum_{i<j} \log \left(\sum_\mu \sin^2 \frac{\vartheta^i_\mu - \vartheta^j_\mu}{2} \right)
 \]
 - For \(d > 2\) eigenvalues attract \(\Rightarrow P_\mu \neq 0\)
 - Note: eigenvalues \(\vartheta\) play similar role as momenta in ordinary lattice calculation.
Large-N volume independence: Possible fixes

- Bhanot, Heller, Neuberger, 1982: Quenched EK (fails)
- Gonzalez-Arroyo, Okawa, 1983: Twisted EK “1.0” (fails)
- Narayanan, Neuberger, 2003: Partial reduction (in L^4 box with big enough L; works, but $L \to \infty$ in the continuum limit)
- Kovtun, "Unsal, Yaffe, 2003-07: Trace-deformed EK (e.g. with adjoint fermions) (in principle works, but . . .)

Add twisted boundary conditions to the model:

$$S_{TEK} = \beta \sum_{\mu < \nu} (1 - \frac{1}{N} z_{\mu\nu} \text{Re} \text{Tr} U_{\mu} U_{\nu} U_{\mu}^\dagger U_{\nu}^\dagger),$$

where $z_{\mu\nu} = \exp(i \epsilon_{\mu\nu} 2 \pi k N)$, k – magnetic flux.

Can be used to calculate Wilson loop expectation values, as well as meson correlators in momentum space.
Bhanot, Heller, Neuberger, 1982: Quenched EK (fails)

Gonzalez-Arroyo, Okawa, 1983: Twisted EK “1.0” (fails)

Narayanan, Neuberger, 2003: Partial reduction (in L^4 box with big enough L; works, but $L \to \infty$ in the continuum limit)

Kovtun, "Unsal, Yaffe, 2003-07: Trace-deformed EK (e.g. with adjoint fermions) (in principle works, but . . .)

Gonzalez-Arroyo, Okawa, 2010: Twisted EK “2.0” (works)
Large-N volume independence: Possible fixes

- Bhanot, Heller, Neuberger, 1982: Quenched EK (fails)
- Gonzalez-Arroyo, Okawa, 1983: Twisted EK “1.0” (fails)
- Narayanan, Neuberger, 2003: Partial reduction (in L^4 box with big enough L; works, but $L \to \infty$ in the continuum limit)
- Kovtun, Ünsal, Yaffe, 2003-07: Trace-deformed EK (e.g. with adjoint fermions) (in principle works, but . . .)
- Gonzalez-Arroyo, Okawa, 2010: Twisted EK “2.0” (works)
Large-\(N\) volume independence: Possible fixes

- Bhanot, Heller, Neuberger, 1982: Quenched EK (fails)
- Gonzalez-Arroyo, Okawa, 1983: Twisted EK “1.0” (fails)
- Narayanan, Neuberger, 2003: Partial reduction (in \(L^4\) box with big enough \(L\); works, but \(L \to \infty\) in the continuum limit)
- Kovtun, Ünsal, Yaffe, 2003-07: Trace-deformed EK (e.g. with adjoint fermions) (\textit{in principle} works, but . . .)
- Gonzalez-Arroyo, Okawa, 2010: Twisted EK “2.0” (\textit{works})

- Add twisted boundary conditions to the model:

\[
S_{TEK} = \beta \sum_{\mu < \nu} (1 - \frac{1}{N} z_{\mu\nu} \text{ReTr} U_\mu U_\nu U_\mu^\dagger U_\nu^\dagger),
\]

where \(z_{\mu\nu} = \exp\left(i \epsilon_{\mu\nu} \frac{2\pi k}{N}\right)\), \(k\) – magnetic flux

- Can be used to calculate Wilson loop expectation values, as well as meson correlators in momentum space.
Large-N volume independence: Plaquette

Comparison of TEK and p.b.c. lattice calculations (Gonzalez-Arroyo, Okawa, 2014)
Large-N volume independence: Mesons

Comparison of TEK and p.b.c. lattice calculations (Gonzalez-Arroyo, Okawa, 2015)
Finite-\(N\) volume (in-)dependence

- Large-\(N\) volume independence strictly true only in the limit \(N \to \infty\).
- What is the situation when working with \(N < \infty\)? Can we quantitatively define some effective system size \(L_{\text{eff}}(N)\)?
Finite-N volume (in-)dependence

Adjoint Eguchi-Kawai model (Bringoltz, MK, Sharpe, 2011):
Log of $1 \times T$ Wilson loops vs T for various values of N
Finite-N volume (in-)dependence

- Large-N volume independence strictly true only in the limit $N \rightarrow \infty$.
- What is the situation when working with $N < \infty$? Can we quantitatively define some effective system size $L_{\text{eff}}(N)$?
- Yes, when using twisted boundary conditions!
- Twisted PT allows interchanging of L and N, physics depends on the product $N^{2/d}L$, d being the number of compact twisted dimensions.
Large-N volume independence strictly true only in the limit $N \to \infty$.

What is the situation when working with $N < \infty$? Can we quantitatively define some effective system size $L_{\text{eff}}(N)$?

Yes, when using twisted boundary conditions!

Twisted PT allows interchanging of L and N, physics depends on the product $N^{2/d}L$, d being the number of compact twisted dimensions.

We have three interesting possibilities:

- 2+1 dim, spatial dimensions compact, $\propto NL$
- 3+1 dim, all dimensions compact, $\propto \sqrt{NL}$
- 3+1 dim, two spatial dimensions compact, $\propto NL$
Twisted boundary conditions ('t Hooft, 1980):

- Theory: pure $SU(N)$ gauge theory on a spatial two-torus of size L; one can choose constant twist matrices:

$$A_i(x + Lj) = \Gamma_j A_i(x) \Gamma_j^\dagger,$$

where $\Gamma_1 \Gamma_2 = e^{i\pi k/N} \Gamma_2 \Gamma_1$.
Finite-N volume (in-)dependence: 2+1 dimensions

Twisted boundary conditions (’t Hooft, 1980):

- Theory: pure $SU(N)$ gauge theory on a spatial two-torus of size L; one can choose constant twist matrices:

 \[A_i(x + Lj) = \Gamma_j A_i(x) \Gamma_j^\dagger, \text{ where } \Gamma_1 \Gamma_2 = e^{i\pi k/N} \Gamma_2 \Gamma_1 \]

- If k and N co-prime \Rightarrow unique solution “irreducible twist”: construct $N \times N$ matrices: $\hat{\Gamma}(p)$, with $p_i = \frac{2\pi n_i}{NL}$ such that:

 \[T^a A^a_i(x) = \sum'_p e^{ip \cdot x} \tilde{A}(p) \hat{\Gamma}(p) \]

- Garcia, Gonzalez-Arroyo, Okawa 2013, 14: Now do PT in these variables, need also structure constants:

 \[[\hat{\Gamma}(p), \hat{\Gamma}(q)] = iF(p, q, -p - q)\hat{\Gamma}(p + q), \]

 \[F(p, q, -p - q) \propto \sin \left(\epsilon_{\mu\nu} p_\mu q_\nu \tilde{\theta}(NL)^2 / 8\pi^2 \right) \]
x-scaling conjecture

- Two dimensionless parameters:
 1. Scaling variable \(x = \frac{NL}{4\pi b} \), where \(b = \frac{1}{g^2 N} \) is the inverse 't Hooft coupling (dimensionful in 2+1!)
 2. Angle \(\tilde{\theta} = \frac{2\pi \bar{k}}{N} \), with integer \(\bar{k} \) defined as: \(k\bar{k} = 1 \pmod{N} \).
The x-scaling conjecture

- Two dimensionless parameters:
 1. Scaling variable $x = \frac{NL}{4\pi b}$, where $b = \frac{1}{g^2 N}$ is the inverse 't Hooft coupling (dimensionful in 2+1!)
 2. Angle $\tilde{\theta} = \frac{2\pi \bar{k}}{N}$, with integer \bar{k} defined as: $k\bar{k} = 1 \pmod{N}$.

- Can be thought of as a strong form of TEK-like volume independence also valid at finite N.
- Caveat: $2\pi\tilde{\theta}$ – unique rational number for every k and N \Rightarrow equivalence up to unknown (outside PT) function of $\tilde{\theta}$.

Physical quantities in the theory depend only on x and the angle $\tilde{\theta}$ given by the parameters of the twist.
Garcia, Gonzalez-Arroyo, Okawa 2013, 14: conjecture satisfied in PT for the non-zero electric flux sector ($\propto k$-string tensions), also non-perturbative lattice confirmation.

Can avoid tachyonic instabilities by suitably scaling $k, \bar{k} \propto N$, analogous to the Twisted Eguchi-Kawai model “1.0” → “2.0”.

What about the zero electric flux sector (\propto glueballs/torelons)?

Here $1/N^2$ corrections can arise in higher orders of PT.

Also known to be only approximate at large x (large volume), but $1/N^2$ coefficients “remarkably small” (Teper et al. 2015)
Contents

1 Introduction
 • Large- \(N \) volume independence
 • Finite- \(N \) volume (in-)dependence
 • \(x \)-scaling conjecture

2 Lattice calculation

3 Results
Numerical calculation

- Goal: numerically verify the conjecture, particularly in the glueball sector.
- For numerical investigation: lattice model with Wilson action:

\[S = Nb \sum_{n \in \mathbb{Z}^3_{(L,L,T)}} \sum_{\mu \neq \nu} \left(N - z_{\mu \nu}^*(n) U_{\mu \nu}^\Box (n) \right), \]

where \(z_{\mu \nu}(n) = \exp \left(i \epsilon_{\mu \nu} \frac{2 \pi k}{N} \right) \) at corner plaquettes in each (1,2)-plane, and 1 everywhere else.
Numerical calculation

- **Goal:** numerically verify the conjecture, particularly in the glueball sector.
- **For numerical investigation:** lattice model with Wilson action:

\[
S = N b \sum_{n \in \mathbb{Z}^3_{(L,L,T)}} \sum_{\mu \neq \nu} \left(N - z_{\mu\nu}^*(n) U_{\mu\nu}(n) \right),
\]

where \(z_{\mu\nu}(n) = \exp\left(i \epsilon_{\mu\nu} \frac{2\pi k}{N} \right) \) at corner plaquettes in each (1,2)-plane, and 1 everywhere else.

- **Numerical agenda:**
 1. Take theories with \(N = 5, 7, 11, 17 \) and approx. matching \(NL \).
 2. Take all values of \(k \) and wide range of couplings, ranging from small-volume perturbative regime (small \(x \)), to large-volume non-perturbative one (large \(x \)).
 3. Calculate lightest scalar [and tensor] glueball masses, as well as electric flux energies.
Numerical calculation: details

- Electric flux energies: find energies from plateaux of the Polyakov loop correlators with winding number \bar{k}.
- Glueballs: variational analysis, use basis of rectangular Wilson loops and moduli of multi-winding Polyakov loops $|\text{Tr } P^n|^2$, with 3 different levels of APE smearing.
- Instead of blocking, use Wilson of large extent trying to follow the physical size of the glueball (including loops larger than L for small and moderate x)
\[C_{RR}(4) \] is the (normalized) correlator of \(W(R, R) \) at time distance 4a, \(N = 5, L = 14, \bar{k} = 2 \).
Numerical calculation: details

- Electric flux energies: find energies from plateaux of the Polyakov loop correlators with winding number \bar{k}.
- Glueballs: variational analysis, use basis of rectangular Wilson loops and moduli of multi-winding Polyakov loops $|\text{Tr} P^n|^2$, with 3 different levels of APE smearing.
- Instead of blocking, use Wilson of large extent trying to follow the physical size of the glueball (including loops larger than L for small and moderate x)
- Construct $C_{ij}(t) = \sum_{t'} \langle O_i(t'+t)O_j(t') \rangle - \langle O_i(t'+t) \rangle \langle O_j(t') \rangle$ and solve GEVP to find improved plateaux.
Numerical calculation: details contd.

GEVP:

1. “Old-school” way:

\[C(t_1)v = C(t_0)\lambda v \]

to find \(v \), use them to change the basis \(C(t) \rightarrow \tilde{C}(t) \ \forall t \) and fit to diagonal elements of \(\tilde{C}(t) \) (after finding the plateau).

2. ALPHA-way: Narrow down the basis to 3-4 operators (thinning/pruning), solve:

\[C_{thin}(t)v = C_{thin}(\lceil t/2 \rceil)\lambda(t)v, \]

use \(\lambda(t) \) directly to produce effective mass plots:

\[E_{n}^{\text{eff}}(t) = -\partial_t \log(\lambda_n(t)). \]

Better theoretical behaviour but more subject to noise. In practice, use only as cross-check of method 1.

Volume dependence in \(SU(N) \) gauge theories with twisted b.c.
Numerical calculation: details cntd.

- Technicalities: use approx. 12 – 25 operators for $C_{ij}(t)$, estimate if basis allows reliable GEVP by first solving it on non-symmetrized $C(t)$, use quad precision for analysis.
- Plateau extraction: following Ryan, 14: “fit histogram”: correlated fits to all possible t ranges, select one with best quality (function of χ^2, interval length, uncertainty size), look at stability.
- Small $x \Rightarrow$ lattice spacings very small \Rightarrow look out for finite-temperature effects from wrap-around gluons!
Contents

1. Introduction
 - Large-N volume independence
 - Finite-N volume (in-)dependence
 - x-scaling conjecture

2. Lattice calculation

3. Results

Volume dependence in $SU(N)$ gauge theories with twisted b.c.
Glueball masses, $x = 0.199 \ (b \approx 28 @ NL = 70)$

Lightest scalar glueball mass as function of $\tilde{\theta}$ for $N = 5, 7, 11, 17$, all values of k. The values of L are 14, 10, 6, 4 respectively.
Overlap of operators, $x = 0.199$

State admixture (= absolute value of the eigenvector) in the GEVP for $N = 17$ in the perturbative region. Black numbers on squares denote the PT expectation.
Comparison of lightest scalar glueball mass for $N = 5, \tilde{\theta} = 2.513$ and $N = 17, \tilde{\theta} = 2.587$, across a wide range of x.
Glueball masses, $x = 2.785$ ($b \approx 2 \otimes NL = 70$)

Lightest scalar glueball mass as function of $\tilde{\theta}$ for $N = 5, 7, 11, 17$, all values of k.
Glueball masses, $x = 2.785$ ($b \approx 2$ @ $NL = 70$)

Lightest scalar glueball mass as function of $\tilde{\theta}$ for $N = 5, 7, 11, 17$, all values of k. Also values for double L (and double b) are shown.
Electric flux energy, $x = 2.785$

Lowest electric flux energy as function of $\tilde{\theta}$ for $N = 5, 7, 11, 17$, all values of k.
Glueball masses, $x = 5.570$ ($b \approx 2 \circledast NL = 140$)

Lightest scalar glueball mass as function of $\tilde{\theta}$ for $N = 5, 7, 11, 17$, all values of k.
Glueball masses, $x = 5.570 \ (b \approx 2 \ @ \ NL = 140)$

Lightest scalar glueball mass as function of $\tilde{\theta}$ for $N = 17$, all values of k.
Why so small mass for $N = 17$, $\tilde{k} = 6$?

- One expects that:
 1. At small x the lightest “glueball” corresponds to a weakly interacting two-gluon state.
 2. At larger x the large-volume glueball becomes the lightest state.
Why so small mass for $N = 17, \bar{k} = 6$?

Electric flux energies as function of $\tilde{\theta}$ for $N = 5, 7, 11, 17$, all values of k.

$N=5$, $kbar=2$, $e=2$
$N=17$, $kbar=6$, $e=6$
$1/2$ of large V glueball mass, Teper, 98
Why so small mass for $N = 17$, $\bar{k} = 6$?

- One expects that:
 1. At small x the lightest “glueball” corresponds to a weakly interacting two-gluon state.
 2. At larger x the large-volume glueball becomes the lightest state.

- However...

- There appears another state, absent for smaller N which becomes the lightest and breaks down the scaling.
Why so small mass for $N = 17$, $\bar{k} = 6$?

Electric flux energies as function of $\tilde{\theta}$ for $N = 17$, all values of k.

1/2 of large V glueball mass, Teper, 98
Why so small mass for $N = 17, \bar{k} = 6$?

- One expects that:
 1. At small x the lightest “glueball” corresponds to a weakly interacting two-gluon state.
 2. At larger x the large-volume glueball becomes the lightest state.

- However...

- There appears another state, absent for smaller N which becomes the lightest and breaks down the scaling.

- Can one work around it? Fine tune \bar{k} to avoid unexpected light states or restrict to selected eigenstates...
Summary & outlook

- x-scaling conjecture: in a 2+1 dimensional Yang-Mills theory with twisted boundary conditions physics is governed by product $NL\lambda$.
- x-scaling with strong confirmation in the non-zero electric flux sector.
- In the glueball sector: conjecture satisfied for small and moderate x, approach to large volume shows significant deviations from a smooth $\tilde{\theta}$ dependence.
- More understanding required to see if one can “save” the conjecture in a restricted form.
- In principle, straightforward to generalize to 3+1 dimensions (cf. Keegan, Ramos, 15).
x-scaling conjecture: in a 2+1 dimensional Yang-Mills theory with twisted boundary conditions physics is governed by product $NL\lambda$

x-scaling with strong confirmation in the non-zero electric flux sector.

In the glueball sector: conjecture satisfied for small and moderate x, approach to large volume shows significant deviations from a smooth $\tilde{\theta}$ dependence.

More understanding required to see if one can “save” the conjecture in a restricted form.

In principle, straightforward to generalize to 3 + 1 dimensions (cf. Keegan, Ramos, 15).

Thank you for your attention!