Quantum link models are generalizations of Wilson's formulation of Lattice Gauge theories, but with discrete degrees of freedom which still implement an exact continuous gauge symmetry. These are amenable to quantum simulation using ultra-cold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, this offers a fresh approach to tackle problems otherwise intractable with conventional simulation methods. Examples include real time dynamics of string breaking to chiral symmetry restoration at finite density presently formulated with simple model systems. These models are excellent candidates to develop algorithms. Some of these models display unconventional phases which have been uncovered only recently using a newly developed cluster algorithm.