QCD, random matrix theory and the sign problem

Jacques Bloch

University of Regensburg

Berlin, May 23, 2011
Outline

1. QCD, quark chemical potential and sign problem
2. Lattice QCD and chiral random matrix theory
3. Spectral features of RMT and sign problem
4. Subset solution to sign problem in dynamical RMT simulations
- QCD at nonzero temperature and density \rightarrow phase diagram

- Dynamical simulations of QCD at nonzero chemical potential μ: complex fermion determinant \rightarrow sign problem in MC simulations

- Universality properties of the Dirac operator to leading order in the ϵ-regime of QCD \rightarrow investigate using random matrix theory

- Dynamical simulations of random matrices (DRMT) at nonzero μ also suffer from sign problem \rightarrow playground for algorithmic developments

- Subset method: avoids the sign problem in DRMT case
Confinement and chiral symmetry

Properties of QCD:

- **Confinement**: no free quarks, only bound states
- **massless quarks**: action invariant under independent transformations of left-handed and right-handed fermions \rightarrow chiral symmetry
 \[SU(N_f)_L \times SU(N_f)_R \times U(1)_A \times U(1)_V \]
 - Adler-Bell-Jackiw anomaly: $U(1)_A$ broken by quantum corrections
 - chiral symmetry is **spontaneously broken** (nonperturbative):
 \[SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V \]
 - light pions: pseudo-Goldstone bosons
 - light quarks but heavy hadrons: dynamically generated constituent quark mass
- **phase transition**: deconfinement and chiral symmetry restoration
QCD at nonzero quark chemical potential

- **QCD Partition function (in Euclidean space):**

\[
Z_{\text{QCD}} = \int DA_\mu \left[\prod_{f=1}^{N_f} \int D\psi_f D\bar{\psi}_f \right] e^{-(S_G + S_F)}
\]

- **\(S_G\):** SU(3) gauge action, **\(S_F\):** fermion action

\[
S_F = \sum_{f=1}^{N_f} \int d^4x \bar{\psi}_f(x)D(x; m_f, \mu)\psi_f(x)
\]

with **Dirac operator** \(D(x; m, \mu) = m + \gamma_\mu \partial^{\mu}_{\text{cov}} + \mu \gamma_4\)

- **QCD at nonzero quark density** → quark chemical potential \(\mu\) couples to quark density \(\psi \dagger \psi = \bar{\psi} \gamma_4 \psi\)
The fermion determinant

Integration over fermion fields:

\[Z_{\text{QCD}} = \int \mathcal{D}A_\mu e^{-S_G} \prod_{f=1}^{N_f} \det[D(x; m_f, \mu)] \]

Expectation value of observable \(Y \) given by ensemble average:

\[\langle Y \rangle = \frac{1}{Z_{\text{QCD}}} \int \mathcal{D}A_\mu Y(A_\mu) e^{-S_G} \prod_{f=1}^{N_f} \det[D(x; m_f, \mu)] \]

Fermion determinant:

\[\det[D(x; m_f, \mu)] \text{ is } \begin{cases} \text{real} & \text{for } \mu = 0 \\ \text{complex} & \text{for } \mu \neq 0 \end{cases} \]
Lattice QCD

- Simulate QCD on a discretized Euclidean space-time lattice → partition function similar to statistical physics
- Approximate functional integral by Markov chain Monte-Carlo simulation with a finite number of relevant $SU(3)$ configurations
- Use importance sampling, e.g. Metropolis method → configurations distributed according to the QCD action
- Sample average of Y using measurements on N_{MC} configurations:

$$\bar{Y} = \frac{1}{N_{MC}} \sum_{j} Y_j$$

- **Sign problem** at $\mu \neq 0$: $\det[D(\mu)]$ becomes complex → can no longer be interpreted as probabilistic weight for MCMC
Quark chemical potential on the lattice

Discretized version of fermion action:

\[S_F = \sum_{x,y} \bar{\psi}_y D_{yx} \psi_x \]

Wilson Dirac-operator with chemical potential:

\[
(D_W)_{yx}(\mu) = \delta_{yx} - \kappa \sum_{i=1}^{3} \left[(1+\gamma_i)U_i(x)\delta_{y,x+i} + (1-\gamma_i)U_i^\dagger(x)\delta_{y,x-i} \right] \\
- \kappa \left[e^{\mu}(1+\gamma_4)U_4(x)\delta_{y,x+4} + e^{-\mu}(1-\gamma_4)U_4^\dagger(x)\delta_{y,x-4} \right]
\]

(Hasenfratz-Karsch, Kogut et al. 1983)

- removes fermion doubling
- breaks chiral symmetry

- Color matrices \(U_i \)
- Dirac matrices \(\gamma_i \)
- Hopping parameter: \(\kappa = (2am + 8)^{-1} \)
Chiral symmetry on the lattice

- Chiral symmetry on the lattice – **Ginsparg-Wilson** relation:
 \[\{D, \gamma_5\} = aD\gamma_5D \]

- Massless overlap Dirac-operator (Neuberger-Narayanan)
 \[D_{ov} = 1 + \gamma_5 \text{sgn}(\gamma_5D_W) \]

Where \(D_W \) is Wilson-Dirac operator:

\[
(D_W)_{yx} = \delta_{yx} - \kappa \sum_{i=1}^{4} (T^+_i + T^-_i)
\]

With \((T^\pm_\nu)_{yx} = (1 \pm \gamma_\nu)U_{x,\pm\nu} \delta_{y,\pm\nu} \)

- \(D_{ov} \) has exact zero modes with definite chirality \(\langle \gamma_5 \rangle = \pm 1 \) reflecting topological charge of gauge configuration (Atiyah-Singer index theorem)
Generalize overlap Dirac operator to nonzero quark chemical potential

- Overlap operator at $\mu \neq 0$ (JB, Wettig PRL97(012003) 2006):

$$D_{ov}(\mu) = 1 + \gamma_5 \text{sgn}(\gamma_5 D_W(\mu))$$

where $D_W(\mu)$ is Wilson-Dirac operator at $\mu \neq 0$: (Hasenfratz-Karsch 1983, Kogut et al. 1983)

$$D_W(\mu) = 1 - \kappa \sum_{i=1}^{3} (T_i^+ + T_i^-) - \kappa (e^{\mu} T_4^+ + e^{-\mu} T_4^-)$$

- **Sign problem** at $\mu \neq 0$: $\det[D_{ov}(\mu)]$ is complex \rightarrow can no longer be incorporated in probability distribution for MCMC
Typical spectrum \((V = 4^4, \beta = 5.1, m_W = -2)\)

\[\mu = 0.3\]

- \(D_{ov}(\mu)\) satisfies Ginsparg-Wilson relation \(\rightarrow\) lattice chiral symmetry
- exact zero modes with definite chirality
- naturally violates \(\gamma_5\)-Hermiticity \(\rightarrow\) spectrum no longer on circle
Chiral perturbation theory: to leading order (in ϵ-regime) the spectral properties of Dirac operator in QCD are universal and can be described by chiral random matrix theory (RMT).

Two-matrix model (Osborn) for Dirac operator:

$$D_{\mu,m}(\phi_1, \phi_2) = \begin{pmatrix} m & i\phi_1 + \mu\phi_2 \\ i\phi_1^\dagger + \mu\phi_2^\dagger & m \end{pmatrix}$$

with ϕ_1, ϕ_2 complex $(N + \nu) \times N$ matrices distributed according to partition function (ν zero modes)

$$Z = \int d\phi_1 d\phi_2 w(\phi_1) w(\phi_2) \det^{N_f} D_{\mu,m}(\phi_1, \phi_2)$$

with Gaussian weights $w(\phi) = (N / \pi)^{N(N+\nu)} \exp(-N \text{ tr } \phi^\dagger \phi)$.

$D_{\mu,m}$ is non-Hermitian \rightarrow complex determinant
Quenched RMT partition function – $N_f = 0$

After diagonalization the partition function is:

$$Z_\nu(\mu^2, m) = \int \prod_{k=1}^{N} d^2 z_k \, w_\nu(z_k, z_k^*; \mu^2) |\Delta_N(\{z^2\})|^2$$

with weight function:

$$w_\nu(z, z^*; \mu^2) = |z|^{2\nu+2} \exp \left[-\frac{N(1-\mu^2)}{4\mu^2}(z^2 + z^{*2})\right] K_\nu \left[\frac{N(1+\mu^2)}{2\mu^2}|z|^2\right]$$

and Vandermonde determinant: $\Delta_N(\{z^2\}) \equiv \prod_{i>j=1}^{N} (z_i^2 - z_j^2)$

Using orthogonal polynomials wrt $w_\nu(z, z^*; \mu^2)$ – analytic computation of:

- spectral density
- individual eigenvalue distributions
- average phase factor
Relating RMT to QCD – microscopic limit:

\[N \rightarrow \infty \text{ while keeping } \hat{\mu}^2 = 2N \mu^2, \hat{m} = 2N m \text{ fixed} \]

RMT: quenched microscopic spectral density

\[
\rho_\nu(z) = \frac{|z|^2}{2\pi \hat{\mu}^2} e^{-\frac{z^2 + z^*^2}{8\hat{\mu}^2}} K_\nu \left(\frac{|z|^2}{4\hat{\mu}^2} \right) \int_0^1 dt \, t e^{-2\hat{\mu}^2 t^2} |I_\nu(tz)|^2
\]

Akemann, Osborn, Splittorff, Verbaarschot 2004-2005

Correspondence RMT ↔ LQCD: \(z = \lambda V \Sigma \) and \(\mu^2 = \mu^2_{\text{phys}} f_\pi^2 V \)

Low Energy Constants \(\Sigma \) and \(F \) of chiral perturbation theory can be extracted by fitting LQCD data to chRMT

LQCD: overlap fermions have **exact zero modes** → test RMT predictions for **non-trivial topology**(\(\nu \neq 0 \))
Spectral density, $V = 4^4$, $\mu = 0.1$, 8703 config.

\[\Sigma a^3 \quad f_\pi a \quad \chi^2 / \text{dof} \]
\[0.0812(11) \quad 0.261(6) \quad 0.67 \]
Individual eigenvalue distributions

Distribution of first peak in RMT:

Integrated eigenvalue distribution – RMT vs LQCD:

\[P_1(R) = \int d\theta R p_1(R, \theta) \]
Phase factor of fermion determinant in chRMT

- Determinant of massive Dirac operator:
 \[\det[D_{\mu,m}] \equiv Re^{i\theta} \]

- **Average phase factor** \(\langle e^{2i\theta} \rangle \) reflects fluctuations of fermion determinant → characterizes strength of sign problem in dynamical simulations

- Phase factor of the two-fermion determinant is:
 \[
e^{2i\theta} = \frac{\det(D(\mu) + m)}{\det(D^{\dagger}(\mu) + m)} = \prod_{k=1}^{N} \frac{m^2 - z_k^2}{m^2 - z_k^{*2}}\]

- **Unquenched ensemble average** (\(\alpha = \mu^2 \)):
 \[
 \langle e^{2i\theta} \rangle_{N_f} = \left\langle \frac{\det(D(\mu) + m)}{\det(D^{\dagger}(\mu) + m)} \right\rangle_{N_f} = \frac{Z_v^{N_f+1|1^*}(\alpha, m, m_f)}{Z_v^{N_f}(\alpha, m_f)}
 = \frac{1}{Z_v^{N_f}} \int_{\mathbb{C}} \prod_{k=1}^{N} d^2z_k \; w^v(z_k, z_k^{*}; \alpha) |\Delta_N(\{z^2\})|^2 \frac{m^2 - z_k^2}{m^2 - z_k^{*2}} \prod_{f=1}^{N_f} (m_f^2 - z_k^2),
 \]

Jacques Bloch
Average phase factor

- General topol.: JB & Wettig, JHEP 03 (2009) 100, JHEP 05 (2011) 048
- Computable with complex Cauchy transform (Akemann, Pottier & Bergère (2004)):
- Microscopic limit of average phase factor with N_f equal mass fermions:

$$\langle e^{2i\theta} \rangle_{N_f} = \frac{1}{(2\hat{m})^{N_f} N_f!} \begin{vmatrix} \mathcal{H}_{v,0}^s(\hat{\alpha}, \hat{m}) & \cdots & \mathcal{H}_{v,N_f+1}^s(\hat{\alpha}, \hat{m}) \\ I_{v,0}^{(0)}(\hat{m}) & \cdots & I_{v,N_f+1}^{(0)}(\hat{m}) \\ \vdots & \vdots & \vdots \\ I_{v,0}^{(N_f)}(\hat{m}) & \cdots & I_{v,N_f+1}^{(N_f)}(\hat{m}) \\ I_{v,0}^{(N_f)}(\hat{m}) & \cdots & I_{v,N_f-1}^{(N_f)}(\hat{m}) \\ \vdots & \vdots & \vdots \\ I_{v,0}^{(N_f-1)}(\hat{m}) & \cdots & I_{v,N_f-1}^{(N_f-1)}(\hat{m}) \end{vmatrix}$$

with $I_{v,k}(z) = z^k I_{v+k}(z)$, $I_k(z)$: modified Bessel function
Complex Cauchy transform (microscopic limit)

\[\mathcal{H}_{\nu, k}(\hat{\alpha}, \hat{m}) = -\frac{e^{-2\hat{\alpha}}}{4\pi \hat{\alpha} \hat{m}^\nu} \int_{\mathbb{C}} \frac{d^2z}{z^2 - \hat{m}^2} \frac{|z|^{2(\nu+1)}}{z^{*\nu}} e^{-\frac{z^2 + z^{*2}}{8\hat{\alpha}}} K_{\nu} \left(\frac{|z|^2}{4\hat{\alpha}} \right) I_{\nu, k}(\hat{z}^*) \]

- Integrand of \(\mathcal{H}_{\nu, k}(\alpha, m) \) strongly oscillates in \(\text{Im} \, z \) direction
- Numerical solution too inaccurate
- Semi-analytic solution using complex analysis and properties of orthogonal polynomials

\[\mathcal{H}_{\nu, k}(\hat{\alpha}, \hat{m}) = e^{-2\hat{\alpha} - \frac{\hat{m}^2}{8\hat{\alpha}}} \int_{0}^{\hat{m}} du u^{k+1} K_{\nu} \left(\frac{\hat{m}u}{4\hat{\alpha}} \right) e^{-\frac{u^2}{8\hat{\alpha}}} I_{\nu+k}(u) + \frac{(4\hat{\alpha})^{\nu+k}}{2\hat{m}^\nu} \int_{1}^{\infty} ds e^{-\frac{\hat{m}^2}{8\hat{\alpha} s}} - 2\hat{\alpha} s (1 - s)^k s^{\nu-1} \]
Compare chRMT versus quenched LQCD

\(\mu = 0.1 \) (\(\hat{\alpha} = 0.175 \))

- \(\nu = 0 \)
- \(\nu = 1 \)
- \(\nu = 2 \)

\(\mu = 0.2 \) (\(\hat{\alpha} = 0.615 \))

- \(\nu = 0 \)
- \(\nu = 1 \)
- \(\nu = 2 \)

- Agreement only qualitative → not enough EV’s in universality region
Average phase factor $\langle e^{2i\theta} \rangle$ reflects fluctuations of fermion determinant → characterizes strength of sign problem

Analytic RMT results for $\langle e^{2i\theta} \rangle$

$\langle e^{2i\theta} \rangle$ vs $\hat{\alpha} = 2N \mu^2$ ($\hat{m} = 0$)

$\langle e^{2i\theta} \rangle$ vs $\hat{m} = 2N m$ ($\hat{\alpha} = 1$)

Sign problem
Examine sign problem using dynamical simulations of chiral random matrix theory
Dynamical simulations with complex weights

- Ensemble average of \(y \) in ensemble with weight \(w \):

\[
\langle y \rangle_w = \frac{\int dx \ w(x)y(x)}{\int dx \ w(x)}
\]

- **Reweighting**: Introduce auxiliary ensemble with weight \(w_{aux} \):

\[
\langle y \rangle_w = \frac{\int dx \ w_{aux}(x)\frac{w(x)}{w_{aux}(x)}y(x)}{\int dx \ w_{aux}(x)\frac{w(x)}{w_{aux}(x)}} = \langle \frac{w}{w_{aux}}y \rangle_{w_{aux}}
\]

Ensemble \(w_{aux} \) can be sampled using importance sampling methods. Typical examples for \(w_{aux} \): quenched, phase quenched, sign quenched

- **Problem**: Work needed to make reliable measurements on the statistical ensemble grows exponentially with volume and \(\mu \)

- **Reason**: computation of exponentially small reweighting factors from a statistical sampling of largely canceling contributions
Subset method for dynamical RMT simulations

Principle: rewrite partition function as integral over subsets Ω:

$$Z = \int d\Omega \, W(\Omega) \, \sigma_{\mu,m}(\Omega)$$

with subsets

$$\Omega(\phi) = \left\{ \psi(\phi; \theta_n) : \theta_n = \frac{\pi n}{N_s} \land n = 0, \ldots, N_s - 1 \right\},$$

containing N_s orthogonal rotations of a given $\phi = (\phi_1, \phi_2)$:

$$\begin{cases}
\psi_1(\phi; \theta) = \cos \theta \, \phi_1 + \sin \theta \, \phi_2 \\
\psi_2(\phi; \theta) = \cos \theta \, \phi_2 - \sin \theta \, \phi_1
\end{cases}$$

- Gaussian weights $w(\psi_1)w(\psi_2)$ are independent of $\theta \rightarrow W(\Omega)$
- Fermionic subset weights:

$$\sigma_{\mu,m}(\Omega) = \sum_{n=0}^{N_s-1} \det^{N_f} D_{\mu,m}(\psi(\phi; \theta_n))$$
Subset method – Equivalence

- For each configuration $\phi = (\phi_1, \phi_2)$ of original partition function \rightarrow subset $\Omega(\phi)$
- Set of all subsets forms an N_s-fold covering of the RMT ensemble \rightarrow equivalent partition function
Subset method is based on the following positivity theorem:

For any such subset Ω the fermionic subset weight $\sigma_{\mu,m}(\Omega)$ is real and positive if $N_s > NN_f$ (for arbitrary m and $\mu < 1$)

More specifically:

- For any μ and $m = 0$:
 $$\sigma_{\mu,0}(\Omega) = (1 - \mu^2)^{NN_f} \sigma_{0,0}(\Omega)$$

 - $\sigma_{0,0}$ is real and positive \rightarrow $\sigma_{\mu,0}$ also real and positive for $\mu < 1$
 - For $\mu = 1$ the sum of determinants is exactly zero

- For $m \neq 0$: $\sigma_{\mu,m}$ is real and $\sigma_{\mu,m}(\Omega) > (1 - \mu^2)^{NN_f} \sigma_{0,m}(\Omega)$ for $\mu < 1$
 \rightarrow $\sigma_{\mu,m}$ is positive
Subset method – Simulations

- Use weights $W(\Omega)\sigma_{\mu,m}(\Omega)$ to generate subsets of random matrices using a Metropolis algorithm.

- In practice: set subset size N_s to its minimum value, i.e., $N_s = NN_f + 1$.

- Successive subsets in the Markov chain are generated as follows:
 - randomly choose configuration in current subset
 - generate new configuration by making random step
 - construct subset corresponding to new configuration
 - apply accept-reject step to proposed subset

 \rightarrow satisfies detailed balance

- Sample average \bar{O} of observable O over sample of N_{MC} subsets Ω_k:

$$
\bar{O}_{\mu,m} = \frac{1}{N_{MC}} \sum_{k=1}^{N_{MC}} \sum_{n=0}^{N_s-1} \frac{\det^N_D D_{\mu,m}(\psi^{kn})}{\sigma_{\mu,m}(\Omega_k)} O_{\mu,m}(\psi^{kn}),
$$

where $\psi^{kn} \in \Omega_k$.
Apply the subset method to compute the chiral condensate

\[\Sigma = \frac{1}{2N} \text{tr} D^{-1} \]

In each Markov chain we generate \(N_{MC} = 100,000 \) subsets.

Successive subsets in Markov chains are correlated with integrated autocorrelation time \(\tau \). Number of independent subsets: \(N_{MC} / 2\tau \).

Statistical errors: standard error formula corrected for autocorrelations

Compare with standard reweighting methods (quenched, phase quenched and sign quenched). Generate \((NN_f + 1) \times N_{MC}\) random matrices to get same total number of matrices as in subset method.

Simulations for \(N = 2, \ldots, 34 \) with \(N_f = 1 \) and \(m = 0.1/2N \) (mass is small w.r.t. magnitude of smallest eigenvalue)
Subset method vs phase-quenched reweighting

Chiral condensate Σ vs μ^2 for $N = 2, 4, 8$

(Full line: exact analytical result)
Phase quenched reweighting:

- As matrix size increases: reweighting method fails for smaller and smaller μ^2 due to sign and overlap problem
- Error grows exponentially with μ, until method fails when set of sampled matrices no longer overlaps with relevant configurations

Subset method:

- results reliable up to much larger values of μ^2 and agree with the analytical predictions.
- Error independent of the chemical potential
Relative error ϵ on the chiral condensate versus matrix size N

Subset method

Phase quenched reweighting

(semi-log plot)
Phase quenched reweighting:
- Work grows \textbf{exponentially} with N and μ

Subset method:
- Error \textbf{independent} of μ
- Error proportional to
 - \sqrt{N} for fixed number of sampled subsets
 - N for fixed number of sampled matrices
- For constant error: number of sampled matrices should grow as N^2

Comparison:
- cancellations no longer happen through statistical sampling, but occur deterministically inside \textbf{subsets of size $O(n)$}.
Chiral RMT gives spectral information about Dirac operator of QCD.

Average phase factor characterizes sign problem and can be computed in RMT.

Sign problem of QCD is also present in dynamical RMT simulations.

Subset method solves the sign problem for Osborn model.

Open question: is subset method applicable to physically relevant systems?